Overall Statistics |
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio -0.578 Tracking Error 0.278 Treynor Ratio 0 Total Fees $0.00 Estimated Strategy Capacity $0 Lowest Capacity Asset |
import numpy as np class SquareLightBrownPanda(QCAlgorithm): def Initialize(self): self.SetStartDate(2020, 1, 1) self.SetEndDate(2021,1,1) self.SetCash(100000) self.pep = self.AddEquity("PEP", Resolution.Daily).Symbol # Add data for PEP self.coke = self.AddEquity("COKE", Resolution.Daily).Symbol # Add data for COKE self.sma_pep = self.SMA(self.pep,5,Resolution.Daily) #create 5 simple moving average indicator self.sma_coke = self.SMA(self.coke,5,Resolution.Daily) #create 5 simple moving average indicator self.log_ratio_spread_sma = SimpleMovingAverage(5) self.SetWarmUp(10) def OnData(self, data): # Check if the price SMAs are ready if not self.sma_pep.IsReady or not self.sma_coke.IsReady: return # Check if we have data if self.pep not in data.Bars or self.coke not in data.Bars: return # Calculate log ratio spread log_ratio_pep = np.log(data[self.pep].Price / self.sma_pep.Current.Value) log_ratio_coke = np.log(data[self.coke].Price / self.sma_coke.Current.Value) log_ratio_spread = log_ratio_pep - log_ratio_coke # Update and plot SMA of log ratio spread if self.log_ratio_spread_sma.Update(data.Time, log_ratio_spread): self.Plot("Spread", "log_ratio_spread", log_ratio_spread) self.Plot("Spread", "log_ratio_spread_sma", self.log_ratio_spread_sma.Current.Value)