Overall Statistics |
Total Orders 3 Average Win 0% Average Loss 0% Compounding Annual Return -8.407% Drawdown 0.700% Expectancy 0 Start Equity 100000 End Equity 99504 Net Profit -0.496% Sharpe Ratio -2.807 Sortino Ratio -2.191 Probabilistic Sharpe Ratio 12.949% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha -0.063 Beta 0.172 Annual Standard Deviation 0.027 Annual Variance 0.001 Information Ratio -0.04 Tracking Error 0.054 Treynor Ratio -0.438 Total Fees $3.00 Estimated Strategy Capacity $87000000.00 Lowest Capacity Asset GOOCV 30JDODO6600CM|GOOCV VP83T1ZUHROL Portfolio Turnover 4.19% |
# region imports from AlgorithmImports import * # endregion class ConversionOptionStrategy(QCAlgorithm): def initialize(self): self.set_start_date(2017, 4, 1) self.set_end_date(2017, 4, 23) self.set_cash(100000) equity = self.add_equity("GOOG", Resolution.MINUTE) option = self.add_option("GOOG", Resolution.MINUTE) self.symbol = option.symbol # set our strike/expiry filter for this option chain option.set_filter(lambda universe: universe.include_weeklys().conversion(30, -5)) def on_data(self, data): # avoid extra orders if self.portfolio.invested: return # Get the OptionChain of the self.symbol chain = data.option_chains.get(self.symbol, None) if not chain: return # choose the furthest expiration date within 30 days from now on expiry = sorted(chain, key = lambda x: x.expiry)[-1].expiry # select ATM strike price strike = sorted(chain, key = lambda x: abs(x.Strike - chain.underlying.price))[0].strike # Order Strategy conversion = OptionStrategies.conversion(self.symbol, strike, expiry) self.buy(conversion, 1) def on_end_of_day(self, symbol): if symbol.value == "GOOG": self.log(f"{self.time}::{symbol}::{self.securities[symbol].price}")