Overall Statistics |
Total Orders 127 Average Win 0.91% Average Loss -0.90% Compounding Annual Return -2.626% Drawdown 11.800% Expectancy 0.019 Start Equity 100000 End Equity 98898.47 Net Profit -1.102% Sharpe Ratio 0.02 Sortino Ratio 0.026 Probabilistic Sharpe Ratio 22.738% Loss Rate 49% Win Rate 51% Profit-Loss Ratio 1.01 Alpha -0.229 Beta 1.035 Annual Standard Deviation 0.227 Annual Variance 0.051 Information Ratio -1.156 Tracking Error 0.191 Treynor Ratio 0.004 Total Fees $1006.92 Estimated Strategy Capacity $21000000.00 Lowest Capacity Asset AAPL R735QTJ8XC9X Portfolio Turnover 165.92% |
from AlgorithmImports import * from QuantConnect.DataSource import * class TiingoNewsDataAlgorithm(QCAlgorithm): current_holdings = 0 target_holdings = 0 word_scores = {'good': 1, 'great': 1, 'best': 1, 'growth': 1, 'bad': -1, 'terrible': -1, 'worst': -1, 'loss': -1} def initialize(self) -> None: self.set_start_date(2021, 1, 1) self.set_end_date(2021, 6, 1) self.set_cash(100000) # Requesting data self.aapl = self.add_equity("AAPL", Resolution.MINUTE).symbol self.tiingo_symbol = self.add_data(TiingoNews, self.aapl).symbol # Historical data history = self.history(self.tiingo_symbol, 14, Resolution.DAILY) self.debug(f"We got {len(history)} items from our history request") def on_data(self, slice: Slice) -> None: if slice.contains_key(self.tiingo_symbol): # Assign a sentiment score to the news article title_words = slice[self.tiingo_symbol].description.lower() score = 0 for word, word_score in self.word_scores.items(): if word in title_words: score += word_score if score > 0: self.target_holdings = 1 elif score < 0: self.target_holdings = -1 # Buy or short sell if the sentiment has changed from our current holdings if slice.contains_key(self.aapl) and self.current_holdings != self.target_holdings: self.set_holdings(self.aapl, self.target_holdings) self.current_holdings = self.target_holdings