Overall Statistics |
Total Orders 4 Average Win 0% Average Loss 0% Compounding Annual Return -11.143% Drawdown 1.000% Expectancy 0 Start Equity 100000 End Equity 99108.5 Net Profit -0.892% Sharpe Ratio -3.838 Sortino Ratio -2.464 Probabilistic Sharpe Ratio 0.208% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha -0.098 Beta 0.036 Annual Standard Deviation 0.025 Annual Variance 0.001 Information Ratio -2.728 Tracking Error 0.065 Treynor Ratio -2.623 Total Fees $4.00 Estimated Strategy Capacity $14000000.00 Lowest Capacity Asset GOOCV 30JDODO6600CM|GOOCV VP83T1ZUHROL Portfolio Turnover 0.29% |
# region imports from AlgorithmImports import * # endregion class BoxSpreadStrategy(QCAlgorithm): def initialize(self): self.set_start_date(2017, 4, 1) self.set_end_date(2017, 4, 30) self.set_cash(100000) self.universe_settings.asynchronous = True option = self.add_option("GOOG", Resolution.MINUTE) self._symbol = option.Symbol option.set_filter(lambda universe: universe.include_weeklys().box_spread(30, 5)) def on_data(self, slice: Slice): if self.portfolio.invested: return # Get the OptionChain chain = slice.option_chains.get(self._symbol, None) if not chain: return # Select an expiry date expiry = max([x.expiry for x in chain]) # Select the strike prices of the contracts contracts = [x for x in chain if x.expiry == expiry] higher_strike = max([x.strike for x in contracts]) lower_strike = min([x.strike for x in contracts]) box_spread = OptionStrategies.box_spread(self._symbol, higher_strike, lower_strike, expiry) self.buy(box_spread, 1) def on_end_of_day(self, symbol): if symbol == self._symbol.underlying: self.Log(f"{self.time}::{symbol}::{self.securities[symbol].price}")