Overall Statistics |
Total Orders 45 Average Win 2.44% Average Loss -2.09% Compounding Annual Return 3.690% Drawdown 14.600% Expectancy 0.183 Start Equity 25000 End Equity 28904.65 Net Profit 15.619% Sharpe Ratio 0.286 Sortino Ratio 0.27 Probabilistic Sharpe Ratio 9.939% Loss Rate 45% Win Rate 55% Profit-Loss Ratio 1.17 Alpha -0.019 Beta 0.473 Annual Standard Deviation 0.059 Annual Variance 0.003 Information Ratio -0.93 Tracking Error 0.063 Treynor Ratio 0.036 Total Fees $45.00 Estimated Strategy Capacity $450000000.00 Lowest Capacity Asset SPY R735QTJ8XC9X Portfolio Turnover 2.16% |
from AlgorithmImports import * from QuantConnect.DataSource import * class VixCentralContangoAlgorithm (QCAlgorithm): def initialize(self) -> None: self.set_start_date(2014,1,1) self.set_end_date(2018,1,1) self.set_cash(25000) self.spy = self.add_equity("SPY", Resolution.DAILY).symbol self.contango = self.add_data(VIXCentralContango, "VX", Resolution.DAILY).symbol def on_data(self, slice: Slice) -> None: contango_data = slice.Get(VIXCentralContango, self.contango) ratio = contango_data.contango_f2_minus_f1 if contango_data else 0 if not self.portfolio.invested and ratio > 0: self.market_order(self.spy, 100) elif ratio < 0: self.liquidate()