Overall Statistics |
Total Orders 1 Average Win 0% Average Loss 0% Compounding Annual Return -1.086% Drawdown 36.300% Expectancy 0 Start Equity 25000 End Equity 22403.93 Net Profit -10.384% Sharpe Ratio -0.221 Sortino Ratio -0.149 Probabilistic Sharpe Ratio 0.004% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha -0.036 Beta 0.188 Annual Standard Deviation 0.099 Annual Variance 0.01 Information Ratio -0.655 Tracking Error 0.152 Treynor Ratio -0.116 Total Fees $0.00 Estimated Strategy Capacity $0 Lowest Capacity Asset WIKI/IBM.NasdaqCustomColumns 2S Portfolio Turnover 0.03% |
from AlgorithmImports import * from QuantConnect.DataSource import * class NasdaqImporterAlgorithm(QCAlgorithm): def initialize(self): '''Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.''' self.nasdaq_code = "WIKI/IBM" ## Optional argument - personal token necessary for restricted dataset # NasdaqDataLink.set_auth_code(self.get_parameter("nasdaq-data-link-api-key")) self.set_start_date(2014,4,1) #Set Start Date self.set_end_date(datetime.today() - timedelta(1)) #Set End Date self.set_cash(25000) #Set Strategy Cash self.add_data(NasdaqCustomColumns, self.nasdaq_code, Resolution.DAILY, TimeZones.NEW_YORK) self.sma = self.SMA(self.nasdaq_code, 14) def on_data(self, data): '''OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.''' if not self.portfolio.hold_stock: self.set_holdings(self.nasdaq_code, 1) self.debug("Purchased {0} >> {1}".format(self.nasdaq_code, self.time)) self.plot(self.nasdaq_code, "PriceSMA", self.sma.current.value) # NasdaqDataLink often doesn't use close columns so need to tell LEAN which is the "value" column. class NasdaqCustomColumns(NasdaqDataLink): '''Custom nasdaq data type for setting customized value column name. Value column is used for the primary trading calculations and charting.''' def __init__(self): # Define ValueColumnName: cannot be None, Empty or non-existant column name super().__init__("adj. close") self.value_column_name = "adj. close"