Overall Statistics |
Total Orders 266 Average Win 2.32% Average Loss -2.33% Compounding Annual Return 23.219% Drawdown 28.700% Expectancy 0.196 Net Profit 69.258% Sharpe Ratio 0.761 Sortino Ratio 0.634 Probabilistic Sharpe Ratio 32.344% Loss Rate 40% Win Rate 60% Profit-Loss Ratio 1.00 Alpha 0.036 Beta 0.733 Annual Standard Deviation 0.224 Annual Variance 0.05 Information Ratio -0.07 Tracking Error 0.181 Treynor Ratio 0.233 Total Fees $2200.20 Estimated Strategy Capacity $520000000.00 Lowest Capacity Asset AAPL R735QTJ8XC9X Portfolio Turnover 28.74% |
#region imports using System; using System.Collections; using System.Collections.Generic; using System.Linq; using System.Globalization; using System.Drawing; using QuantConnect; using System.Text.RegularExpressions; using QuantConnect.Algorithm.Framework; using QuantConnect.Algorithm.Framework.Selection; using QuantConnect.Algorithm.Framework.Alphas; using QuantConnect.Algorithm.Framework.Portfolio; using QuantConnect.Algorithm.Framework.Execution; using QuantConnect.Algorithm.Framework.Risk; using QuantConnect.Algorithm.Selection; using QuantConnect.Parameters; using QuantConnect.Benchmarks; using QuantConnect.Brokerages; using QuantConnect.Util; using QuantConnect.Interfaces; using QuantConnect.Algorithm; using QuantConnect.Indicators; using QuantConnect.Data; using QuantConnect.Data.Consolidators; using QuantConnect.Data.Custom; using QuantConnect.DataSource; using QuantConnect.Data.Fundamental; using QuantConnect.Data.Market; using QuantConnect.Data.UniverseSelection; using QuantConnect.Notifications; using QuantConnect.Orders; using QuantConnect.Orders.Fees; using QuantConnect.Orders.Fills; using QuantConnect.Orders.Slippage; using QuantConnect.Scheduling; using QuantConnect.Securities; using QuantConnect.Securities.Equity; using QuantConnect.Securities.Future; using QuantConnect.Securities.Option; using QuantConnect.Securities.Forex; using QuantConnect.Securities.Crypto; using QuantConnect.Securities.Interfaces; using QuantConnect.Storage; using QCAlgorithmFramework = QuantConnect.Algorithm.QCAlgorithm; using QCAlgorithmFrameworkBridge = QuantConnect.Algorithm.QCAlgorithm; #endregion public class BrainSentimentDataAlgorithm : QCAlgorithm { private Symbol _symbol; private Symbol _datasetSymbol; private decimal? _latestSentimentValue; private int _targetHoldings = 0; public override void Initialize() { SetStartDate(2019, 1, 1); SetEndDate(2021, 7, 8); SetCash(100000); // Requesting data _symbol = AddEquity("AAPL", Resolution.Daily).Symbol; _datasetSymbol = AddData<BrainSentimentIndicator30Day>(_symbol).Symbol; /// Historical data var history = History<BrainSentimentIndicator30Day>(_datasetSymbol, 100, Resolution.Daily); Debug($"We got {history.Count()} items from our history request for {_datasetSymbol}"); // Warm up historical sentiment values var previousSentimentValues = history.Select(x => x.Sentiment); foreach (var sentiment in previousSentimentValues) { Update(sentiment); } } private void Update(decimal sentiment) { if (_latestSentimentValue != null) { _targetHoldings = sentiment > _latestSentimentValue ? 1 : 0; } _latestSentimentValue = sentiment; } public override void OnData(Slice slice) { if (slice.ContainsKey(_datasetSymbol)) { var sentiment = slice[_datasetSymbol].Sentiment; Update(sentiment); } if (!(slice.ContainsKey(_symbol) && slice[_symbol] != null)) { return; } if (_targetHoldings==1 != Portfolio.Invested) { SetHoldings(_symbol, _targetHoldings); } } }