Overall Statistics |
Total Trades 81 Average Win 1.37% Average Loss -0.90% Compounding Annual Return -2.366% Drawdown 15.800% Expectancy 0.060 Net Profit -2.750% Sharpe Ratio -0.041 Probabilistic Sharpe Ratio 8.858% Loss Rate 58% Win Rate 42% Profit-Loss Ratio 1.52 Alpha 0.003 Beta 0.687 Annual Standard Deviation 0.157 Annual Variance 0.025 Information Ratio 0.06 Tracking Error 0.12 Treynor Ratio -0.009 Total Fees $134.91 Estimated Strategy Capacity $760000000.00 Lowest Capacity Asset SPY R735QTJ8XC9X |
# region imports from AlgorithmImports import * import tensorflow.compat.v1 as tf from google.protobuf import json_format import json5 tf.disable_v2_behavior() # endregion class TensorflowExampleAlgorithm(QCAlgorithm): def Initialize(self): self.SetStartDate(2021, 7, 1) self.SetCash(100000) self.symbol = self.AddEquity("SPY", Resolution.Daily).Symbol training_length = 252*2 self.training_data = RollingWindow[float](training_length) history = self.History[TradeBar](self.symbol, training_length, Resolution.Daily) for trade_bar in history: self.training_data.Add(trade_bar.Close) if self.ObjectStore.ContainsKey('graph') and self.ObjectStore.ContainsKey('weights'): json_graph = self.ObjectStore.Read('graph') json_weights = self.ObjectStore.Read('weights') # Restore the tensorflow graph from JSON objects tf.reset_default_graph() graph_definition = json_format.Parse(json_graph, tf.MetaGraphDef()) self.model = tf.Session() tf.train.import_meta_graph(graph_definition) # Select the input, output tensors and optimizer self.X = tf.get_default_graph().get_tensor_by_name('X:0') self.Y = tf.get_default_graph().get_tensor_by_name('Y:0') self.output = tf.get_default_graph().get_tensor_by_name('outer:0') self.optimizer = tf.get_default_graph().get_collection('Variable/Adam') # Restore the model weights from the JSON object. weights = [np.asarray(x) for x in json5.loads(json_weights)] assign_ops = [] feed_dict = {} vs = tf.trainable_variables() zipped_values = zip(vs, weights) for var, value in zipped_values: value = np.asarray(value) assign_placeholder = tf.placeholder(var.dtype, shape=value.shape) assign_op = var.assign(assign_placeholder) assign_ops.append(assign_op) feed_dict[assign_placeholder] = value self.model.run(assign_ops, feed_dict=feed_dict) else: self.model, self.X, self.Y, self.output, self.optimizer = self.BuildModel() self.model.run(tf.global_variables_initializer()) self.Train(self.my_training_method) # Train the model every Sunday at 8:00 AM self.Train(self.DateRules.Every(DayOfWeek.Sunday), self.TimeRules.At(8, 0), self.my_training_method) def BuildModel(self): # Instantiate a tensorflow session sess = tf.Session() # Declare the number of factors and then create placeholders for the input and output layers. num_factors = 5 X = tf.placeholder(dtype=tf.float32, shape=[None, num_factors], name='X') Y = tf.placeholder(dtype=tf.float32, shape=[None], name='Y') # Set up the weights and bias initializers for each layer. weight_initializer = tf.variance_scaling_initializer(mode="fan_avg", distribution="uniform", scale=1) bias_initializer = tf.zeros_initializer() # Create hidden layers that use the Relu activator. num_neurons_1 = 32 num_neurons_2 = 16 num_neurons_3 = 8 W_hidden_1 = tf.Variable(weight_initializer([num_factors, num_neurons_1])) bias_hidden_1 = tf.Variable(bias_initializer([num_neurons_1])) hidden_1 = tf.nn.relu(tf.add(tf.matmul(X, W_hidden_1), bias_hidden_1)) W_hidden_2 = tf.Variable(weight_initializer([num_neurons_1, num_neurons_2])) bias_hidden_2 = tf.Variable(bias_initializer([num_neurons_2])) hidden_2 = tf.nn.relu(tf.add(tf.matmul(hidden_1, W_hidden_2), bias_hidden_2)) W_hidden_3 = tf.Variable(weight_initializer([num_neurons_2, num_neurons_3])) bias_hidden_3 = tf.Variable(bias_initializer([num_neurons_3])) hidden_3 = tf.nn.relu(tf.add(tf.matmul(hidden_2, W_hidden_3), bias_hidden_3)) # Create the output layer and give it a name, so it is accessible after saving and loading the model. W_out = tf.Variable(weight_initializer([num_neurons_3, 1])) bias_out = tf.Variable(bias_initializer([1])) output = tf.transpose(tf.add(tf.matmul(hidden_3, W_out), bias_out), name='outer') # Set up the loss function and optimizers for gradient descent optimization and backpropagation. # This example uses mean-square error as the loss function because the close price is a continuous data and uses Adam as the optimizer because of its adaptive step size. loss = tf.reduce_mean(tf.squared_difference(output, Y)) optimizer = tf.train.AdamOptimizer().minimize(loss) return sess, X, Y, output, optimizer def get_features_and_labels(self, n_steps=5): close_prices = list(self.training_data)[::-1] features = [] labels = [] for i in range(len(close_prices)-n_steps): features.append(close_prices[i:i+n_steps]) labels.append(close_prices[i+n_steps]) features = np.array(features) labels = np.array(labels) return features, labels def my_training_method(self): features, labels = self.get_features_and_labels() self.model.run(self.optimizer, feed_dict={self.X: features, self.Y: labels}) def OnData(self, slice: Slice) -> None: if self.symbol in slice.Bars: self.training_data.Add(slice.Bars[self.symbol].Close) new_features, __ = self.get_features_and_labels() prediction = self.model.run(self.output, feed_dict={self.X: new_features[-1].reshape(1, -1)}) prediction = float(prediction.flatten()[-1]) if prediction > slice[self.symbol].Price: self.SetHoldings(self.symbol, 1) else: self.SetHoldings(self.symbol, -1) def OnEndOfAlgorithm(self): graph_definition = tf.train.export_meta_graph() json_graph = json_format.MessageToJson(graph_definition) weights = self.model.run(tf.trainable_variables()) weights = [w.tolist() for w in weights] json_weights = json5.dumps(weights) self.ObjectStore.Save('graph', json_graph) self.ObjectStore.Save('weights', json_weights)