Overall Statistics |
Total Orders 4 Average Win 0% Average Loss 0% Compounding Annual Return -10.609% Drawdown 1.000% Expectancy 0 Start Equity 100000 End Equity 99153.5 Net Profit -0.846% Sharpe Ratio -3.086 Sortino Ratio -1.768 Probabilistic Sharpe Ratio 2.165% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha -0.095 Beta 0.054 Annual Standard Deviation 0.029 Annual Variance 0.001 Information Ratio -2.631 Tracking Error 0.066 Treynor Ratio -1.693 Total Fees $4.00 Estimated Strategy Capacity $8100000.00 Lowest Capacity Asset GOOCV 30JDODO6600CM|GOOCV VP83T1ZUHROL Portfolio Turnover 0.29% |
# region imports from AlgorithmImports import * # endregion class ProtectiveCollarOptionStrategy(QCAlgorithm): def initialize(self): self.SetStartDate(2017, 4, 1) self.SetEndDate(2017, 4, 30) self.SetCash(100000) self.UniverseSettings.Asynchronous = True self.equity_symbol = self.AddEquity("GOOG").Symbol option = self.AddOption("GOOG", Resolution.Minute) self.option_symbol = option.Symbol option.set_filter(lambda universe: universe.include_weeklys().box_spread(30, 5)) self.invest_ever = False def on_data(self, slice: Slice): if self.invest_ever: return # Get the OptionChain chain = slice.option_chains.get(self.option_symbol, None) if not chain: return # Select an expiry date expiry = sorted(chain, key = lambda x: x.expiry)[-1].expiry # Select the strike prices of the contracts ordered_contracts = sorted(chain, key = lambda x: x.strike) higher_strike = ordered_contracts[-1].strike lower_strike = ordered_contracts[0].strike box_spread = OptionStrategies.short_box_spread(self.option_symbol, higher_strike, lower_strike, expiry) self.buy(box_spread, 1) self.invest_ever = True def on_end_of_day(self, symbol): if symbol == self.equity_symbol: self.Log(f"{self.time}::{symbol}::{self.securities[symbol].price}")