Overall Statistics |
Total Orders 2 Average Win 0% Average Loss 0% Compounding Annual Return -1.368% Drawdown 0.100% Expectancy 0 Start Equity 1000000 End Equity 999207.7 Net Profit -0.079% Sharpe Ratio -15.144 Sortino Ratio -16.819 Probabilistic Sharpe Ratio 1.569% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha -0.024 Beta 0.009 Annual Standard Deviation 0.002 Annual Variance 0 Information Ratio 0.846 Tracking Error 0.057 Treynor Ratio -2.646 Total Fees $2.30 Estimated Strategy Capacity $560000.00 Lowest Capacity Asset GOOCV WJVVXYUIC7ZA|GOOCV VP83T1ZUHROL Portfolio Turnover 0.01% |
from AlgorithmImports import * class BackspreadOptionStrategyAlgorithm(QCAlgorithm): def initialize(self) -> None: self.set_start_date(2017, 4, 1) self.set_end_date(2017, 4, 22) self.set_cash(1000000) self.universe_settings.asynchronous = True option = self.add_option("GOOG", Resolution.MINUTE) self._symbol = option.symbol option.set_filter(lambda universe: universe.include_weeklys().call_spread(20, 5)) def on_data(self, slice: Slice) -> None: if self.portfolio.invested: return # Get the OptionChain chain = slice.option_chains.get(self._symbol, None) if not chain: return # Select the call Option contracts with the furthest expiry expiry = max([x.expiry for x in chain]) calls = [i for i in chain if i.expiry == expiry and i.right == OptionRight.CALL] if not calls: return # Select the strike prices from the remaining contracts strikes = sorted(set(x.strike for x in calls)) if len(strikes) < 2: return low_strike = strikes[0] high_strike = strikes[1] option_strategy = OptionStrategies.call_backspread(self._symbol, low_strike, high_strike, expiry) self.buy(option_strategy, 1)