Overall Statistics |
Total Orders 62 Average Win 1.46% Average Loss -1.67% Compounding Annual Return -1.613% Drawdown 7.000% Expectancy 0.004 Start Equity 100000 End Equity 98786.38 Net Profit -1.214% Sharpe Ratio -0.535 Sortino Ratio -0.657 Probabilistic Sharpe Ratio 11.741% Loss Rate 46% Win Rate 54% Profit-Loss Ratio 0.87 Alpha -0.039 Beta 0.033 Annual Standard Deviation 0.07 Annual Variance 0.005 Information Ratio -0.483 Tracking Error 0.149 Treynor Ratio -1.127 Total Fees $0.00 Estimated Strategy Capacity $0 Lowest Capacity Asset XAGUSD 8I Portfolio Turnover 19.83% |
#region imports using Newtonsoft.Json; using System; using System.Collections; using System.Collections.Generic; using System.Linq; using System.Globalization; using System.Drawing; using QuantConnect; using QuantConnect.Algorithm.Framework; using QuantConnect.Algorithm.Framework.Selection; using QuantConnect.Algorithm.Framework.Alphas; using QuantConnect.Algorithm.Framework.Portfolio; using QuantConnect.Algorithm.Framework.Portfolio.SignalExports; using QuantConnect.Algorithm.Framework.Execution; using QuantConnect.Algorithm.Framework.Risk; using QuantConnect.Algorithm.Selection; using QuantConnect.Api; using QuantConnect.Parameters; using QuantConnect.Benchmarks; using QuantConnect.Brokerages; using QuantConnect.Configuration; using QuantConnect.Util; using QuantConnect.Interfaces; using QuantConnect.Algorithm; using QuantConnect.Indicators; using QuantConnect.Data; using QuantConnect.Data.Auxiliary; using QuantConnect.Data.Consolidators; using QuantConnect.Data.Custom; using QuantConnect.Data.Custom.IconicTypes; using QuantConnect.DataSource; using QuantConnect.Data.Fundamental; using QuantConnect.Data.Market; using QuantConnect.Data.Shortable; using QuantConnect.Data.UniverseSelection; using QuantConnect.Notifications; using QuantConnect.Orders; using QuantConnect.Orders.Fees; using QuantConnect.Orders.Fills; using QuantConnect.Orders.OptionExercise; using QuantConnect.Orders.Slippage; using QuantConnect.Orders.TimeInForces; using QuantConnect.Python; using QuantConnect.Scheduling; using QuantConnect.Securities; using QuantConnect.Securities.Equity; using QuantConnect.Securities.Future; using QuantConnect.Securities.Option; using QuantConnect.Securities.Positions; using QuantConnect.Securities.Forex; using QuantConnect.Securities.Crypto; using QuantConnect.Securities.CryptoFuture; using QuantConnect.Securities.Interfaces; using QuantConnect.Securities.Volatility; using QuantConnect.Storage; using QuantConnect.Statistics; using QCAlgorithmFramework = QuantConnect.Algorithm.QCAlgorithm; using QCAlgorithmFrameworkBridge = QuantConnect.Algorithm.QCAlgorithm; #endregion namespace QuantConnect { public class GoldSilverPairsTradingAlgorithm : QCAlgorithm { // Use 500-step mean and SD indicator on determine the spread relative difference for trading signal generation private SimpleMovingAverage _spreadMean = new SimpleMovingAverage(500); private StandardDeviation _spreadStd = new StandardDeviation(500); private Security[] _pair = new Security[2]; public override void Initialize() { SetStartDate(2018, 7, 1); SetEndDate(2019, 3, 31); SetCash(100000); // Request gold and sliver spot CFDs for trading their spread difference, assuming their spread series is cointegrated AddCfd("XAUUSD", Resolution.Hour); AddCfd("XAGUSD", Resolution.Hour); } public override void OnData(Slice slice) { // Update the indicator with updated spread difference, such that the an updated cointegration threshold is calculated for trade inception var spread = _pair[1].Price - _pair[0].Price; _spreadMean.Update(Time, spread); _spreadStd.Update(Time, spread); var upperthreshold = _spreadMean + _spreadStd; var lowerthreshold = _spreadMean - _spreadStd; // If the spread is higher than upper threshold, bet theie spread series will revert to mean if (spread > upperthreshold) { SetHoldings(_pair[0].Symbol, 1); SetHoldings(_pair[1].Symbol, -1); } else if (spread < lowerthreshold) { SetHoldings(_pair[0].Symbol, -1); SetHoldings(_pair[1].Symbol, 1); } // Close positions if mean reverted else if ((Portfolio[_pair[0].Symbol].Quantity > 0m && spread < _spreadMean) || (Portfolio[_pair[0].Symbol].Quantity < 0m && spread > _spreadMean)) { Liquidate(); } } public override void OnSecuritiesChanged(SecurityChanges changes) { _pair = changes.AddedSecurities.ToArray(); //1. Call for 500 days of history data for each symbol in the pair and save to the variable history var history = History(_pair.Select(x => x.Symbol), 500); //2. Iterate through the history tuple and update the mean and standard deviation with historical data foreach(var slice in history) { var spread = slice[_pair[1].Symbol].Close - slice[_pair[0].Symbol].Close; _spreadMean.Update(slice.Time, spread); _spreadStd.Update(slice.Time, spread); } } } }