Overall Statistics |
Total Orders 1 Average Win 0% Average Loss 0% Compounding Annual Return -5.978% Drawdown 28.300% Expectancy 0 Start Equity 100000 End Equity 93942.25 Net Profit -6.058% Sharpe Ratio -0.069 Sortino Ratio -0.085 Probabilistic Sharpe Ratio 10.663% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0.123 Beta 1.212 Annual Standard Deviation 0.264 Annual Variance 0.07 Information Ratio 0.676 Tracking Error 0.145 Treynor Ratio -0.015 Total Fees $3.40 Estimated Strategy Capacity $330000000.00 Lowest Capacity Asset AAPL R735QTJ8XC9X Portfolio Turnover 0.27% |
from AlgorithmImports import * from QuantConnect.DataSource import * class QuiverLobbyingDataAlgorithm(QCAlgorithm): def initialize(self) -> None: self.set_start_date(2021, 10, 7) #Set Start Date self.set_end_date(2022, 10, 11) #Set End Date self.aapl = self.add_equity("AAPL", Resolution.DAILY).symbol self.dataset_symbol = self.add_data(QuiverLobbyings, self.aapl).symbol # history request history = self.history(self.dataset_symbol, 10, Resolution.DAILY) self.debug(f"We got {len(history)} items from historical data request of {self.dataset_symbol}.") def on_data(self, slice: Slice) -> None: for lobbyings in slice.Get(QuiverLobbyings).values(): if any([lobbying.amount > 50000 for lobbying in lobbyings]): self.set_holdings(self.aapl, 1) elif any([lobbying.amount < 10000 for lobbying in lobbyings]): self.set_holdings(self.aapl, -1)