Overall Statistics |
Total Orders 18 Average Win 5.10% Average Loss -0.71% Compounding Annual Return 30.783% Drawdown 12.400% Expectancy 3.110 Start Equity 1000000 End Equity 1389110.4 Net Profit 38.911% Sharpe Ratio 0.799 Sortino Ratio 0.382 Probabilistic Sharpe Ratio 46.326% Loss Rate 50% Win Rate 50% Profit-Loss Ratio 7.22 Alpha 0.138 Beta 0.391 Annual Standard Deviation 0.223 Annual Variance 0.05 Information Ratio 0.33 Tracking Error 0.228 Treynor Ratio 0.455 Total Fees $544.60 Estimated Strategy Capacity $5000000.00 Lowest Capacity Asset ES YLZ9Z7LFSJOK|ES YLZ9Z50BJE2P Portfolio Turnover 20.89% |
from AlgorithmImports import * class FutureOptionExampleAlgorithm(QCAlgorithm): def initialize(self) -> None: self.set_start_date(2023, 7, 1) self.set_cash(1000000) # Subscribe the underlying since the updated price is needed for filtering self.underlying = self.add_future(Futures.Indices.SP_500_E_MINI, extended_market_hours=True, data_mapping_mode=DataMappingMode.OPEN_INTEREST, data_normalization_mode=DataNormalizationMode.BACKWARDS_RATIO, contract_depth_offset=0) # Filter the underlying continuous Futures to narrow the FOP spectrum self.underlying.set_filter(0, 182) # Filter for the current-week-expiring calls to formulate a covered call that expires at the end of week self.add_future_option(self.underlying.symbol, lambda u: u.include_weeklys().calls_only().expiration(0, 5)) def on_data(self, slice: Slice) -> None: # Create canonical symbol for the mapped future contract, since option chains are mapped by canonical symbol symbol = Symbol.create_canonical_option(self.underlying.mapped) # Get option chain data for the mapped future, as both the underlying and FOP have the highest liquidity among all other contracts chain = slice.option_chains.get(symbol) if not self.portfolio.invested and chain: # Obtain the ATM call that expires at the end of week, such that both underlying and the FOP expires the same time expiry = max(x.expiry for x in chain) atm_call = sorted([x for x in chain if x.expiry == expiry], key=lambda x: abs(x.strike - x.underlying_last_price))[0] # Use abstraction method to order a covered call to avoid manual error option_strategy = OptionStrategies.covered_call(symbol, atm_call.strike,expiry) self.buy(option_strategy, 1) def on_securities_changed(self, changes: SecurityChanges) -> None: for security in changes.added_securities: if security.type == SecurityType.FUTURE_OPTION: # Historical data history = self.history(security.symbol, 10, Resolution.MINUTE) self.debug(f"We got {len(history)} from our history request for {security.symbol}")