Overall Statistics |
Total Orders 3 Average Win 0.56% Average Loss 0% Compounding Annual Return 0.636% Drawdown 0.600% Expectancy 0 Start Equity 100000 End Equity 100102 Net Profit 0.102% Sharpe Ratio -0.194 Sortino Ratio -0.329 Probabilistic Sharpe Ratio 36.612% Loss Rate 0% Win Rate 100% Profit-Loss Ratio 0 Alpha -0.006 Beta -0.093 Annual Standard Deviation 0.015 Annual Variance 0 Information Ratio 0.183 Tracking Error 0.148 Treynor Ratio 0.032 Total Fees $2.00 Estimated Strategy Capacity $28000.00 Lowest Capacity Asset IBM VNWUCLACI1RA|IBM R735QTJ8XC9X Portfolio Turnover 0.01% |
#region imports from AlgorithmImports import * #endregion class NakedCallAlgorithm(QCAlgorithm): def initialize(self): self.set_start_date(2014, 1, 1) self.set_end_date(2014, 3, 1) self.set_cash(100000) option = self.add_option("IBM") self.symbol = option.symbol option.set_filter(lambda universe: universe.include_weeklys().naked_call(30, 0)) self.call = None # use the underlying equity as the benchmark self.set_benchmark(self.symbol.underlying) def on_data(self, slice): if self.call and self.portfolio[self.call].invested: return chain = slice.option_chains.get(self.symbol) if not chain: return # Find ATM call with the farthest expiry expiry = max([x.expiry for x in chain]) call_contracts = sorted([x for x in chain if x.right == OptionRight.CALL and x.expiry == expiry], key=lambda x: abs(chain.underlying.price - x.strike)) if not call_contracts: return atm_call = call_contracts[0] naked_call = OptionStrategies.naked_call(self.symbol, atm_call.strike, expiry) self.buy(naked_call, 1) self.call = atm_call.symbol