Overall Statistics |
Total Orders 1 Average Win 0% Average Loss 0% Compounding Annual Return -30.235% Drawdown 14.200% Expectancy 0 Start Equity 100000 End Equity 96920.7 Net Profit -3.079% Sharpe Ratio -0.881 Sortino Ratio -1.447 Probabilistic Sharpe Ratio 27.075% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0.063 Beta 2.285 Annual Standard Deviation 0.283 Annual Variance 0.08 Information Ratio -0.683 Tracking Error 0.165 Treynor Ratio -0.109 Total Fees $2.15 Estimated Strategy Capacity $78000000.00 Lowest Capacity Asset ES YGT6HGVF2SQP Portfolio Turnover 6.79% |
# region imports from AlgorithmImports import * # endregion class SleepyTanAlligator(QCAlgorithm): def initialize(self): self.set_start_date(2023, 10, 1) self.set_end_date(2023, 11, 1) self.set_cash(100000) self.future = self.add_future(Futures.Indices.SP_500_E_MINI) self.symbol = self.future.symbol self.future.set_filter(0, 182) def on_data(self, data: Slice): if not self.portfolio.invested: for continuous_contract_symbol, chain in data.futures_chains.items(): contract = sorted(chain, key=lambda contract: contract.open_interest, reverse=True)[0] self.market_order(contract.symbol, 1) def on_end_of_day(self, symbol) -> None: self.plot("Margin", "MarginRemaining", self.portfolio.margin_remaining) self.plot("Margin", "TotalMarginUsed", self.portfolio.total_margin_used)