Overall Statistics |
Total Trades 3 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio 0 Tracking Error 0 Treynor Ratio 0 Total Fees $3.00 Estimated Strategy Capacity $2000000.00 Lowest Capacity Asset QQQ RIWIV7K5Z9LX |
# Import packages import numpy as np import pandas as pd import scipy as sc from QuantConnect.Python import PythonQuandl # ------------------------------------------------------------------ STK = ['QQQ']; BND = ['TLT']; VOLA = 126; BASE_RET = 85; LEV = 1.00; PAIRS = ['SLV', 'GLD', 'XLI', 'XLU', 'DBB', 'UUP'] # ------------------------------------------------------------------ class InOut(QCAlgorithm): def Initialize(self): self.quandlCode = "OECD/KEI_LOLITOAA_OECDE_ST_M" ## Optional argument - personal token necessary for restricted dataset #Quandl.SetAuthCode("PrzwuZR28Wqegvv1sdJ7") self.SetStartDate(2020, 1, 1) self.SetEndDate(2021, 1, 1) self.SetCash(25000) # Set Strategy Cash self.cap = 12500 self.UniverseSettings.Resolution = Resolution.Daily res = Resolution.Minute # Holdings ### 'Out' holdings and weights self.BND1 = self.AddEquity('TLT', res).Symbol #TLT; TMF for 3xlev self.BND2 = self.AddEquity('IEF', res).Symbol #IEF; TYD for 3xlev self.HLD_OUT = {self.BND1: .5, self.BND2: .5} ### 'In' holdings and weights (static stock selection strategy) self.STKS = self.AddEquity('QQQ', res).Symbol #SPY or QQQ; TQQQ for 3xlev self.HLD_IN = {self.STKS: 1} # Market and list of signals based on ETFs self.MRKT = self.AddEquity('SPY', res).Symbol # market self.GOLD = self.AddEquity('GLD', res).Symbol # gold self.SLVA = self.AddEquity('SLV', res).Symbol # vs silver self.UTIL = self.AddEquity('XLU', res).Symbol # utilities self.INDU = self.AddEquity('XLI', res).Symbol # vs industrials self.METL = self.AddEquity('DBB', res).Symbol # input prices (metals) self.USDX = self.AddEquity('UUP', res).Symbol # safe haven (USD) self.FORPAIRS = [self.GOLD, self.SLVA, self.UTIL, self.INDU, self.METL, self.USDX] # set a warm-up period to initialize the indicators self.SetWarmUp(timedelta(350)) # Specific variables self.DISTILLED_BEAR = 999 self.BE_IN = 999 self.VOLA_LOOKBACK = 126 self.WAITD_CONSTANT = 85 self.DCOUNT = 1 # count of total days since start self.OUTDAY = 1 # dcount when self.be_in=0 self.Schedule.On( self.DateRules.EveryDay(), self.TimeRules.AfterMarketOpen('SPY', 120), self.BearRebalance ) # Setup daily consolidation symbols = [self.MRKT] + self.FORPAIRS for symbol in symbols: self.consolidator = TradeBarConsolidator(timedelta(days=1)) self.consolidator.DataConsolidated += self.consolidation_handler self.SubscriptionManager.AddConsolidator(symbol, self.consolidator) # Warm up history self.history = self.History(symbols, self.VOLA_LOOKBACK+1, Resolution.Daily) if self.history.empty or 'close' not in self.history.columns: return self.history = self.history['close'].unstack(level=0).dropna() self.derive_vola_waitdays() ### kei #self.SetWarmup(100) self.SetBenchmark("SPY") self.init = True self.kei = self.AddData(QuandlCustomColumns, self.quandlCode, Resolution.Daily, TimeZones.NewYork).Symbol self.sma = self.SMA(self.kei, 1) self.mom = self.MOMP(self.kei, 2) #self.SPY = self.AddEquity('SPY', Resolution.Daily).Symbol self.stock = self.AddEquity('QQQ', Resolution.Hour).Symbol self.bond = self.AddEquity('TLT', Resolution.Hour).Symbol self.STK = self.AddEquity('QQQ', Resolution.Minute).Symbol self.BND = self.AddEquity('TLT', Resolution.Minute).Symbol self.ASSETS = [self.STK, self.BND] self.SLV = self.AddEquity('SLV', Resolution.Daily).Symbol self.GLD = self.AddEquity('GLD', Resolution.Daily).Symbol self.XLI = self.AddEquity('XLI', Resolution.Daily).Symbol self.XLU = self.AddEquity('XLU', Resolution.Daily).Symbol self.DBB = self.AddEquity('DBB', Resolution.Daily).Symbol self.UUP = self.AddEquity('UUP', Resolution.Daily).Symbol self.MKT = self.AddEquity('SPY', Resolution.Daily).Symbol self.pairs = [self.SLV, self.GLD, self.XLI, self.XLU, self.DBB, self.UUP] self.symbols = ['FAS', 'ERX', 'UYM', 'DUSL', 'WANT', 'UGE', 'UTSL', 'TECL', 'CURE', 'TENG', 'XLRE'] #Leverged 3x # self.XLF = self.AddEquity('FAS', Resolution.Hour).Symbol # self.XLE = self.AddEquity('ERX', Resolution.Hour).Symbol # self.XLB = self.AddEquity('UYM', Resolution.Hour).Symbol # self.XLI = self.AddEquity('DUSL', Resolution.Hour).Symbol # self.XLY = self.AddEquity('WANT', Resolution.Hour).Symbol # self.XLP = self.AddEquity('UGE', Resolution.Hour).Symbol # self.XLU = self.AddEquity('UTSL', Resolution.Hour).Symbol # self.XLK = self.AddEquity('TECL', Resolution.Hour).Symbol # self.XLV = self.AddEquity('CURE', Resolution.Hour).Symbol # self.XLC = self.AddEquity('TENG', Resolution.Hour).Symbol # self.XLRE = self.AddEquity('XLRE', Resolution.Hour).Symbol self.XLF = self.AddEquity('XLF', Resolution.Hour).Symbol self.XLE = self.AddEquity('XLE', Resolution.Hour).Symbol self.XLB = self.AddEquity('XLB', Resolution.Hour).Symbol self.XLI = self.AddEquity('XLI', Resolution.Hour).Symbol self.XLY = self.AddEquity('XLY', Resolution.Hour).Symbol self.XLP = self.AddEquity('XLP', Resolution.Hour).Symbol self.XLU = self.AddEquity('XLU', Resolution.Hour).Symbol self.XLK = self.AddEquity('XLK', Resolution.Hour).Symbol self.XLV = self.AddEquity('XLV', Resolution.Hour).Symbol self.XLC = self.AddEquity('XLC', Resolution.Hour).Symbol self.XLRE = self.AddEquity('XLRE', Resolution.Hour).Symbol #self.Schedule.On(self.DateRules.WeekStart(self.stock), self.TimeRules.AfterMarketOpen(self.stock, 31), # self.Rebalance) self.bull = 1 self.count = 0 self.outday = 50 self.wt = {} self.real_wt = {} self.mkt = [] self.SetWarmUp(timedelta(350)) self.Schedule.On(self.DateRules.EveryDay(self.stock), self.TimeRules.AfterMarketOpen(self.stock, 1), self.Rebalance) self.Schedule.On(self.DateRules.EveryDay(), self.TimeRules.AfterMarketOpen('SPY', 100), self.daily_check) symbols = [self.MKT] + self.pairs for symbol in symbols: self.consolidator = TradeBarConsolidator(timedelta(days=1)) self.consolidator.DataConsolidated += self.consolidation_handler self.SubscriptionManager.AddConsolidator(symbol, self.consolidator) self.history = self.History(symbols, VOLA + 1, Resolution.Daily) if self.history.empty or 'close' not in self.history.columns: return self.history = self.history['close'].unstack(level=0).dropna() #self.AddRiskManagement(TrailingStopRiskManagementModel(0.05)) ### def consolidation_handler(self, sender, consolidated): self.history.loc[consolidated.EndTime, consolidated.Symbol] = consolidated.Close self.history = self.history.iloc[-(VOLA + 1):] def daily_check(self): vola = self.history[[self.MKT]].pct_change().std() * np.sqrt(252) wait_days = int(vola * BASE_RET) period = int((1.0 - vola) * BASE_RET) r = self.history.pct_change(period).iloc[-1] exit = ((r[self.SLV] < r[self.GLD]) and (r[self.XLI] < r[self.XLU]) and (r[self.DBB] < r[self.UUP])) if exit: self.bull = False self.outday = self.count if self.count >= self.outday + wait_days: self.bull = True self.count += 1 if not self.bull: for sec in self.ASSETS: self.wt[sec] = LEV if sec is self.BND else 0 self.trade() elif self.bull: for sec in self.ASSETS: self.wt[sec] = LEV if sec is self.STK else 0 self.trade() def trade(self): for sec, weight in self.wt.items(): if weight == 0 and self.Portfolio[sec].IsLong: self.Liquidate(sec) cond1 = weight == 0 and self.Portfolio[sec].IsLong cond2 = weight > 0 and not self.Portfolio[sec].Invested if cond1 or cond2: self.SetHoldings(sec, weight) def OnEndOfDay(self): mkt_price = self.Securities[self.MKT].Close self.mkt.append(mkt_price) mkt_perf = self.mkt[-1] / self.mkt[0] * (self.cap * .5) self.Plot('Strategy Equity', 'SPY', mkt_perf) account_leverage = self.Portfolio.TotalHoldingsValue / self.Portfolio.TotalPortfolioValue self.Plot('Holdings', 'leverage', round(account_leverage, 1)) for sec, weight in self.wt.items(): self.real_wt[sec] = round(self.ActiveSecurities[sec].Holdings.Quantity * self.Securities[sec].Price / self.Portfolio.TotalPortfolioValue,4) self.Plot('Holdings', self.Securities[sec].Symbol, round(self.real_wt[sec], 3)) def Rebalance(self): if self.IsWarmingUp or not self.mom.IsReady or not self.sma.IsReady: return initial_asset = self.stock if self.mom.Current.Value > 0 else self.bond if self.init: self.SetHoldings(initial_asset, .01) self.init = False keihist = self.History([self.kei], 1400) #keihist = keihist['Value'].unstack(level=0).dropna() keihistlowt = np.nanpercentile(keihist, 15) keihistmidt = np.nanpercentile(keihist, 50) keihisthight = np.nanpercentile(keihist, 90) kei = self.sma.Current.Value keimom = self.mom.Current.Value if (keimom < 0 and kei < keihistmidt and kei > keihistlowt) and not (self.Securities[self.XLP].Invested): # DECLINE self.Liquidate() self.SetHoldings(self.XLP, .5) self.SetHoldings(self.XLV, .5) #self.SetHoldings(self.bond, 1) self.Debug("STAPLES {0} >> {1}".format(self.XLP, self.Time)) elif (keimom > 0 and kei < keihistlowt) and not (self.Securities[self.XLB].Invested): # RECOVERY self.Liquidate() self.SetHoldings(self.XLB, .5) self.SetHoldings(self.XLY, .5) self.Debug("MATERIALS {0} >> {1}".format(self.XLB, self.Time)) elif (keimom > 0 and kei > keihistlowt and kei < keihistmidt) and not (self.Securities[self.XLE].Invested): # EARLY self.Liquidate() self.SetHoldings(self.XLE, .33) self.SetHoldings(self.XLF, .33) self.SetHoldings(self.XLI, .33) self.Debug("ENERGY {0} >> {1}".format(self.XLE, self.Time)) elif (keimom > 0 and kei > keihistmidt and kei < keihisthight) and not (self.Securities[self.XLU].Invested): # REBOUND self.Liquidate() self.SetHoldings(self.XLK, .5) self.SetHoldings(self.XLU, .5) self.Debug("UTILITIES {0} >> {1}".format(self.XLU, self.Time)) elif (keimom < 0 and kei < keihisthight and kei > keihistmidt) and not (self.Securities[self.XLK].Invested): # LATE self.Liquidate() self.SetHoldings(self.XLK, .5) self.SetHoldings(self.XLC, .5) self.Debug("INFO TECH {0} >> {1}".format(self.XLK, self.Time)) elif (keimom < 0 and kei < 100 and not self.Securities[self.bond].Invested): self.Liquidate() self.SetHoldings(self.bond, 1) self.Plot("LeadInd", "SMA(LeadInd)", self.sma.Current.Value) self.Plot("LeadInd", "THRESHOLD", 100) self.Plot("MOMP", "MOMP(LeadInd)", self.mom.Current.Value) self.Plot("MOMP", "THRESHOLD", 0) ## BEAR def consolidation_handler(self, sender, consolidated): self.history.loc[consolidated.EndTime, consolidated.Symbol] = consolidated.Close self.history = self.history.iloc[-(self.VOLA_LOOKBACK+1):] self.derive_vola_waitdays() def derive_vola_waitdays(self): volatility = np.log1p(self.history[[self.MRKT]].pct_change()).std() * np.sqrt(252) wait_days = int(volatility * self.WAITD_CONSTANT) returns_lookback = int((1.0 - volatility) * self.WAITD_CONSTANT) return wait_days, returns_lookback def BearRebalance(self): wait_days, returns_lookback = self.derive_vola_waitdays() ## Check for Bear returns = self.history.pct_change(returns_lookback).iloc[-1] silver_returns = returns[self.SLVA] gold_returns = returns[self.GOLD] industrials_returns = returns[self.INDU] utilities_returns = returns[self.UTIL] metals_returns = returns[self.METL] dollar_returns = returns[self.USDX] self.DISTILLED_BEAR = (((gold_returns > silver_returns) and (utilities_returns > industrials_returns)) and (metals_returns < dollar_returns) ) # Determine whether 'in' or 'out' of the market if self.DISTILLED_BEAR: self.BE_IN = False self.OUTDAY = self.DCOUNT if self.DCOUNT >= self.OUTDAY + wait_days: self.BE_IN = True self.DCOUNT += 1 # Determine holdings if not self.BE_IN: # Only trade when changing from in to out self.trade({**dict.fromkeys(self.HLD_IN, 0), **self.HLD_OUT}) elif self.BE_IN: # Only trade when changing from out to in self.trade({**self.HLD_IN, **dict.fromkeys(self.HLD_OUT, 0)}) def trade(self, weight_by_sec): buys = [] for sec, weight in weight_by_sec.items(): # Check that we have data in the algorithm to process a trade if not self.CurrentSlice.ContainsKey(sec) or self.CurrentSlice[sec] is None: continue cond1 = weight == 0 and self.Portfolio[sec].IsLong cond2 = weight > 0 and not self.Portfolio[sec].Invested if cond1 or cond2: quantity = self.CalculateOrderQuantity(sec, weight) if quantity > 0: buys.append((sec, quantity)) elif quantity < 0: self.Order(sec, quantity) for sec, quantity in buys: self.Order(sec, quantity) def charting(self, weight_inout_vs_dbear, weighted_be_in): if self.dcount==1: self.benchmarks = [self.history[self.MRKT].iloc[-2], self.Portfolio.TotalPortfolioValue, self.history[self.QQQ].iloc[-2]] # reset portfolio value and qqq benchmark annually if self.Time.year!=self.year: self.benchmarks = [self.benchmarks[0], self.Portfolio.TotalPortfolioValue, self.history[self.QQQ].iloc[-2]] self.year = self.Time.year # SPY benchmark for main chart spy_perf = self.history[self.MRKT].iloc[-1] / self.benchmarks[0] * self.cap self.Plot('Strategy Equity', 'SPY', spy_perf) # Leverage gauge: cash level self.Plot('Cash level', 'cash', round(self.Portfolio.Cash+self.Portfolio.UnsettledCash, 0)) # Annual saw tooth return comparison: Portfolio VS QQQ saw_portfolio_return = self.Portfolio.TotalPortfolioValue / self.benchmarks[1] - 1 saw_qqq_return = self.history[self.QQQ].iloc[-1] / self.benchmarks[2] - 1 self.Plot('Annual Saw Tooth Returns: Portfolio VS QQQ', 'Annual portfolio return', round(saw_portfolio_return, 4)) self.Plot('Annual Saw Tooth Returns: Portfolio VS QQQ', 'Annual QQQ return', round(float(saw_qqq_return), 4)) ### IN/Out indicator and wait days self.Plot("In Out", "inout", int(self.be_in_inout)) self.Plot("In Out", "dbear", int(self.be_in_dbear)) self.Plot("In Out", "rel_w_inout", float(weight_inout_vs_dbear)) self.Plot("In Out", "pct_in_market", float(weighted_be_in)) self.Plot("Wait Days", "waitdays", self.waitdays_inout) def consolidation_handler(self, sender, consolidated): self.history.loc[consolidated.EndTime, consolidated.Symbol] = consolidated.Close self.history = self.history.iloc[-(VOLA + 1):] def daily_check(self): vola = self.history[[self.MKT]].pct_change().std() * np.sqrt(252) wait_days = int(vola * BASE_RET) period = int((1.0 - vola) * BASE_RET) r = self.history.pct_change(period).iloc[-1] exit = ((r[self.SLV] < r[self.GLD]) and (r[self.XLI] < r[self.XLU]) and (r[self.DBB] < r[self.UUP])) if exit: self.bull = False self.outday = self.count if self.count >= self.outday + wait_days: self.bull = True self.count += 1 if not self.bull: for sec in self.ASSETS: self.wt[sec] = LEV if sec is self.BND else 0 self.trade() elif self.bull: for sec in self.ASSETS: self.wt[sec] = LEV if sec is self.STK else 0 self.trade() def trade(self): for sec, weight in self.wt.items(): if weight == 0 and self.Portfolio[sec].IsLong: self.Liquidate(sec) cond1 = weight == 0 and self.Portfolio[sec].IsLong cond2 = weight > 0 and not self.Portfolio[sec].Invested if cond1 or cond2: self.SetHoldings(sec, weight) def OnEndOfDay(self): mkt_price = self.Securities[self.MKT].Close self.mkt.append(mkt_price) mkt_perf = self.mkt[-1] / self.mkt[0] * (self.cap * .5) self.Plot('Strategy Equity', 'SPY', mkt_perf) account_leverage = self.Portfolio.TotalHoldingsValue / self.Portfolio.TotalPortfolioValue self.Plot('Holdings', 'leverage', round(account_leverage, 1)) for sec, weight in self.wt.items(): self.real_wt[sec] = round(self.ActiveSecurities[sec].Holdings.Quantity * self.Securities[sec].Price / self.Portfolio.TotalPortfolioValue,4) self.Plot('Holdings', self.Securities[sec].Symbol, round(self.real_wt[sec], 3)) def Rebalance(self): if self.IsWarmingUp or not self.mom.IsReady or not self.sma.IsReady: return initial_asset = self.stock if self.mom.Current.Value > 0 else self.bond if self.init: self.SetHoldings(initial_asset, .01) self.init = False keihist = self.History([self.kei], 1400) #keihist = keihist['Value'].unstack(level=0).dropna() keihistlowt = np.nanpercentile(keihist, 15) keihistmidt = np.nanpercentile(keihist, 50) keihisthight = np.nanpercentile(keihist, 90) kei = self.sma.Current.Value keimom = self.mom.Current.Value if (keimom < 0 and kei < keihistmidt and kei > keihistlowt) and not (self.Securities[self.XLP].Invested): # DECLINE self.Liquidate() self.SetHoldings(self.XLP, .5) self.SetHoldings(self.XLV, .5) #self.SetHoldings(self.bond, 1) self.Debug("STAPLES {0} >> {1}".format(self.XLP, self.Time)) elif (keimom > 0 and kei < keihistlowt) and not (self.Securities[self.XLB].Invested): # RECOVERY self.Liquidate() self.SetHoldings(self.XLB, .5) self.SetHoldings(self.XLY, .5) self.Debug("MATERIALS {0} >> {1}".format(self.XLB, self.Time)) elif (keimom > 0 and kei > keihistlowt and kei < keihistmidt) and not (self.Securities[self.XLE].Invested): # EARLY self.Liquidate() self.SetHoldings(self.XLE, .33) self.SetHoldings(self.XLF, .33) self.SetHoldings(self.XLI, .33) self.Debug("ENERGY {0} >> {1}".format(self.XLE, self.Time)) elif (keimom > 0 and kei > keihistmidt and kei < keihisthight) and not (self.Securities[self.XLU].Invested): # REBOUND self.Liquidate() self.SetHoldings(self.XLK, .5) self.SetHoldings(self.XLU, .5) self.Debug("UTILITIES {0} >> {1}".format(self.XLU, self.Time)) elif (keimom < 0 and kei < keihisthight and kei > keihistmidt) and not (self.Securities[self.XLK].Invested): # LATE self.Liquidate() self.SetHoldings(self.XLK, .5) self.SetHoldings(self.XLC, .5) self.Debug("INFO TECH {0} >> {1}".format(self.XLK, self.Time)) elif (keimom < 0 and kei < 100 and not self.Securities[self.bond].Invested): self.Liquidate() self.SetHoldings(self.bond, 1) self.Plot("LeadInd", "SMA(LeadInd)", self.sma.Current.Value) self.Plot("LeadInd", "THRESHOLD", 100) self.Plot("MOMP", "MOMP(LeadInd)", self.mom.Current.Value) self.Plot("MOMP", "THRESHOLD", 0) class QuandlCustomColumns(PythonQuandl): def __init__(self): # Define ValueColumnName: cannot be None, Empty or non-existant column name self.ValueColumnName = "Value"