Overall Statistics |
Total Orders 4 Average Win 2.00% Average Loss -0.01% Compounding Annual Return 56.579% Drawdown 1.700% Expectancy 122.887 Start Equity 100000 End Equity 103988.07 Net Profit 3.988% Sharpe Ratio 4.355 Sortino Ratio 6.565 Probabilistic Sharpe Ratio 89.112% Loss Rate 33% Win Rate 67% Profit-Loss Ratio 184.83 Alpha 0.055 Beta 0.554 Annual Standard Deviation 0.086 Annual Variance 0.007 Information Ratio -2.493 Tracking Error 0.082 Treynor Ratio 0.68 Total Fees $9.13 Estimated Strategy Capacity $240000000.00 Lowest Capacity Asset AAPL R735QTJ8XC9X Portfolio Turnover 6.31% |
from AlgorithmImports import * from QuantConnect.DataSource import * class QuiverCNBCsAlgorithm(QCAlgorithm): def initialize(self) -> None: self.set_start_date(2021, 10, 1) #Set Start Date self.set_end_date(2021, 10, 31) #Set End Date self.aapl = self.add_equity("AAPL", Resolution.DAILY).symbol self.dataset_symbol = self.add_data(QuiverCNBCs, self.aapl).symbol # history request history = self.history(self.dataset_symbol, 10, Resolution.DAILY) self.debug(f"We got {len(history)} items from historical data request of {self.dataset_symbol}.") def on_data(self, slice: Slice) -> None: for cnbcs in slice.Get(QuiverCNBCs).values(): if np.mean([cnbc.direction for cnbc in cnbcs]) > 0: self.set_holdings(self.aapl, 1) else: self.set_holdings(self.aapl, 0)