Overall Statistics |
Total Orders 2 Average Win 0% Average Loss 0% Compounding Annual Return -0.273% Drawdown 0.100% Expectancy 0 Start Equity 1000000 End Equity 999842.7 Net Profit -0.016% Sharpe Ratio -10.428 Sortino Ratio -9.393 Probabilistic Sharpe Ratio 25.521% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha -0.017 Beta 0.002 Annual Standard Deviation 0.002 Annual Variance 0 Information Ratio 0.978 Tracking Error 0.058 Treynor Ratio -10.434 Total Fees $2.30 Estimated Strategy Capacity $600000.00 Lowest Capacity Asset GOOCV 30IZW3ETPM1D2|GOOCV VP83T1ZUHROL Portfolio Turnover 0.01% |
from AlgorithmImports import * class BackspreadOptionStrategyAlgorithm(QCAlgorithm): def initialize(self) -> None: self.set_start_date(2017, 4, 1) self.set_end_date(2017, 4, 22) self.set_cash(1000000) self.universe_settings.asynchronous = True option = self.add_option("GOOG", Resolution.MINUTE) self._symbol = option.symbol option.set_filter(lambda universe: universe.include_weeklys().put_spread(20, 5)) def on_data(self, slice: Slice) -> None: if self.portfolio.invested: return # Get the OptionChain chain = slice.option_chains.get(self._symbol, None) if not chain: return # Select the call Option contracts with the furthest expiry expiry = max([x.expiry for x in chain]) puts = [i for i in chain if i.expiry == expiry] if not puts: return # Select the strike prices from the remaining contracts strikes = sorted(set(x.strike for x in puts)) if len(strikes) < 2: return low_strike = strikes[0] high_strike = strikes[1] option_strategy = OptionStrategies.short_put_backspread(self._symbol, high_strike, low_strike, expiry) self.buy(option_strategy, 1)