Overall Statistics |
Total Trades 1531 Average Win 0.34% Average Loss -0.37% Compounding Annual Return 13.685% Drawdown 27.200% Expectancy 0.183 Net Profit 90.031% Sharpe Ratio 0.707 Probabilistic Sharpe Ratio 20.784% Loss Rate 38% Win Rate 62% Profit-Loss Ratio 0.90 Alpha 0.157 Beta -0.173 Annual Standard Deviation 0.185 Annual Variance 0.034 Information Ratio -0.079 Tracking Error 0.27 Treynor Ratio -0.755 Total Fees $1574.58 Estimated Strategy Capacity $490000.00 |
from QuantConnect.Data.UniverseSelection import * import operator from math import ceil,floor import pandas as pd class CoarseFineFundamentalComboAlgorithm(QCAlgorithm): def Initialize(self): self.SetStartDate(2016, 3, 1) #Set Start Date self.SetEndDate(2021, 3, 1) #Set End Date self.SetCash(100000) #Set Strategy Cash self.UniverseSettings.Resolution = Resolution.Daily self.AddUniverse(self.CoarseSelectionFunction, self.FineSelectionFunction) self.__numberOfSymbols = 100 self.__numberOfSymbolsFine = 50 self.num_portfolios = 5 self.symbols = [] self.month = 0 def CoarseSelectionFunction(self, coarse): if self.Time.month == self.month: return Universe.Unchanged self.month = self.Time.month sortedByDollarVolume = sorted([x for x in coarse if x.HasFundamentalData], key=lambda x: x.DollarVolume, reverse=True) top = sortedByDollarVolume[:self.__numberOfSymbols] return [x.Symbol for x in top] def FineSelectionFunction(self, fine): selected = [x for x in fine if x.OperationRatios.OperationMargin.Value and x.ValuationRatios.PriceChange1M and x.ValuationRatios.BookValuePerShare] # Gather factor values factors = pd.DataFrame() symbol_by_str_symbol = {} for f in selected: str_symbol = str(f.Symbol) symbol_by_str_symbol[str_symbol] = f.Symbol factors.loc[str_symbol, 'OperationMargin'] = f.OperationRatios.OperationMargin.Value factors.loc[str_symbol, 'PriceChange1M'] = f.ValuationRatios.PriceChange1M factors.loc[str_symbol, 'BookValuePerShare'] = f.ValuationRatios.BookValuePerShare # Rank symbols by their factor values factors_rank = factors.rank() # Calculate score of each symbol factors['score'] = factors_rank['OperationMargin'] * 0.2 + factors_rank['PriceChange1M'] * 0.4 + factors_rank['BookValuePerShare'] * 0.4 # Sort symbols by their score sorted_by_score = factors['score'].sort_values(ascending=False).index num_stocks = floor(len(selected)/self.num_portfolios) self.symbols = [symbol_by_str_symbol[symbol] for symbol in sorted_by_score[:num_stocks]] return self.symbols def OnData(self, data): if not self.symbols: return weight = 1 / len(self.symbols) for symbol in self.symbols: self.SetHoldings(symbol, weight) self.symbols.clear() def OnSecuritiesChanged(self, changes): for security in changes.RemovedSecurities: self.Liquidate(security.Symbol)