Overall Statistics |
Total Orders 473 Average Win 0.59% Average Loss -0.52% Compounding Annual Return 2.478% Drawdown 8.900% Expectancy 0.161 Start Equity 1000000 End Equity 1206189.35 Net Profit 20.619% Sharpe Ratio -0.072 Sortino Ratio -0.075 Probabilistic Sharpe Ratio 0.882% Loss Rate 45% Win Rate 55% Profit-Loss Ratio 1.13 Alpha -0.024 Beta 0.216 Annual Standard Deviation 0.065 Annual Variance 0.004 Information Ratio -0.697 Tracking Error 0.133 Treynor Ratio -0.022 Total Fees $3502.29 Estimated Strategy Capacity $68000000.00 Lowest Capacity Asset LRCX R735QTJ8XC9X Portfolio Turnover 1.52% |
# region imports from AlgorithmImports import * # endregion class EmpiricalCumulativeDensityFunction(PythonIndicator): def __init__(self, roc_period, lookback_period): self.name = f'ECDF_{roc_period}_{lookback_period}' self.warm_up_period = lookback_period self.time = datetime.min self.value = 0 self.current = IndicatorDataPoint(self.time, self.value) self._roc = RateOfChange(roc_period) self._roc.name = 'ECDF_ROC' self._returns = np.array([]) def update(self, t, price): self.time = t if not self._roc.update(t, price): self.is_ready2 = False return roc = self._roc.current.value if len(self._returns) < self.warm_up_period: self._returns = np.append(self._returns, roc) self.is_ready2 = False return if roc > 0: denominator = len(self._returns[self._returns >= 0]) self.value = len(self._returns[self._returns >= roc]) / denominator if denominator else 0 else: denominator = len(self._returns[self._returns <= 0]) self.value = len(self._returns[self._returns <= roc]) / denominator if denominator else 0 self._returns = np.append(self._returns, roc)[1:] self.is_ready2 = True self.current = IndicatorDataPoint(t, self.value)
# region imports from AlgorithmImports import * from symbol_data import SymbolData import xgboost as xgb from sklearn.preprocessing import StandardScaler # endregion # Sources: # - https://www.quantitativo.com/p/a-mean-reversion-strategy-from-first # - https://www.quantitativo.com/p/machine-learning-and-the-probability # - https://www.quantitativo.com/p/long-and-short-mean-reversion-machine # TODO: # - Factor pre-processing # - Add more factors # - Change QPI lookback to 5 years? # - Limit factor history to x years # - Add liquidity constraint? # - Change ETF to Russel 3000 # pt 2: # - Use 20 max_universe_size instead of 10? # - Add stop-loss and time-limit exit? # - Add the short side? w Vix regime filter to adjust exposure on each side. class ProbabilityOfBouncingBackAlgorithm(QCAlgorithm): def initialize(self): self.set_start_date(2017, 1, 1) self.set_cash(1_000_000) self.add_universe(self._get_asset_prices) etf = Symbol.create('QQQ', SecurityType.EQUITY, Market.USA) self._universe = self.add_universe(self.universe.etf(etf, universe_filter_func=self._select_assets)) self.train(self.date_rules.year_start(), self.time_rules.midnight, self._train_model) self.schedule.on(self.date_rules.every_day(etf), self.time_rules.after_market_open(etf, 1), self._trade) self.set_warm_up(self.start_date - datetime(2015, 1, 1)) # Min start date for QQQ self._symbol_data_by_symbol = {} self._scaler = StandardScaler() self._max_universe_size = self.get_parameter('max_universe_size', 10) self._ecdf_threshold = self.get_parameter('ecdf_thresholdobability_threshold', 0.15) self._probability_threshold = self.get_parameter('probability_threshold', 0.6) def _get_asset_prices(self, fundamentals): # Save the current price of the assets so we can update the factors in _select_assets. self._price_by_symbol = {f.symbol: f.price for f in fundamentals} return [] def _select_assets(self, constituents): # Create SymbolData objects for assets that just entered the ETF. etf_symbols = [c.symbol for c in constituents] new_symbols = [] for symbol in etf_symbols: if symbol not in self._symbol_data_by_symbol: new_symbols.append(symbol) self._symbol_data_by_symbol[symbol] = SymbolData() # Warm up the factors for assets that just entered the ETF (or we haven't seen yet). for bars in self.history[TradeBar](new_symbols, 300, Resolution.DAILY): ### TODO: Ensure this lookback period is sufficient in case an asset leave the ETF for a while. for symbol, bar in bars.items(): self._symbol_data_by_symbol[symbol].update(bar.end_time, bar.close, True) # Update the factors for the rest of the assets we're tracking. for symbol, symbol_data in self._symbol_data_by_symbol.items(): if symbol not in new_symbols and symbol in self._price_by_symbol: self._symbol_data_by_symbol[symbol].update(self.time, self._price_by_symbol[symbol], symbol in etf_symbols) if self.is_warming_up: return [] # Select a subset of the current ETF constituents. probability_by_symbol = {} for c in constituents: # Filter 1: price >= $1 if c.symbol not in self._price_by_symbol or not self._price_by_symbol[c.symbol] >= 1: continue symbol_data = self._symbol_data_by_symbol[c.symbol] # Filter 2: Factor values are ready. if not symbol_data.is_ready: continue # Filter 3: ROC(1) < 0 and 3-day ECDF < 15. if not (symbol_data.ecdf._roc.current.value < 0 and symbol_data.ecdf.value < self._ecdf_threshold): continue # Filter 4: P(bouncing back) > 60% raw_factors = symbol_data.factor_history.iloc[-1].drop(['in_etf', 'ECDF_ROC']).values.reshape(1, -1) p = self._model.predict(xgb.DMatrix(self._scaler.transform(raw_factors)))[0] if p > self._probability_threshold: probability_by_symbol[c.symbol] = p self.plot('Universe', 'Size', len(probability_by_symbol)) # Return <=10 assets with the greatest P(bouncing back). return [symbol for symbol, _ in sorted(probability_by_symbol.items(), key=lambda x: x[1])[-self._max_universe_size:]] def on_warmup_finished(self): self._train_model() def _train_model(self): if self.is_warming_up: return # Get training samples. factors = [] labels = [] for symbol, symbol_data in self._symbol_data_by_symbol.items(): if not symbol_data.is_ready: continue # Select samples that have `in_etf`, `ECDF_3_252` < 15, and ROC(1) < 0. factor_history = symbol_data.factor_history[ (symbol_data.factor_history['in_etf']) & (symbol_data.factor_history['ECDF_3_252'] < self._ecdf_threshold) & (symbol_data.factor_history['ECDF_ROC'] < 0) ].dropna().drop(['in_etf', 'ECDF_ROC'], axis=1) # Align this asset's factor and labels. target_history = symbol_data.target_history idx = sorted(list(set(target_history.index).intersection(set(factor_history.index)))) factor_history = factor_history.loc[idx] target_history = target_history.loc[idx] # Append this asset's factors and labels to the total set of factors/labels. if not (factor_history.empty or target_history.empty): factors.extend(factor_history.values.tolist()) labels.extend(target_history.values.tolist()) factors = np.array(factors) labels = np.array(labels) # Apply pre-processing to the factors. factors = self._scaler.fit_transform(factors) # Train the model. self._model = xgb.train( { 'booster': 'gbtree', 'colsample_bynode': 0.8, 'learning_rate': 0.1, 'lambda': 0.1, 'max_depth': 5, 'num_parallel_tree': 100, 'objective': 'binary:logistic', 'subsample': 0.8, }, xgb.DMatrix(factors, label=labels), num_boost_round=2 ) def _trade(self): if not self._universe.selected: return targets = [PortfolioTarget(symbol, 1/self._max_universe_size) for symbol in self._universe.selected] self.set_holdings(targets, True)
# region imports from AlgorithmImports import * from ecdf import EmpiricalCumulativeDensityFunction # endregion class SymbolData: # For features, I used: (I ended up with 16 features) # - Rates of change for different windows (short, mid, and long terms, up to a year); # - RSIs for different windows; # - QPIs for different windows; # - IBS, Normalized ATR; # - Closing price distance to 200-day SMA; # - Turnover; # - Hurst exponent (I love this indicator and probably will write something especially for it in the future). # For features such as Turnover, I computed its relative value vs. past (time series) and relative value vs. all other stocks every single day (cross-sectional); # For some other features, it makes sense only to compute its relative value vs. all other stocks every single day (cross-sectional); # For the target, we set 1 if the stock bounced back within 5 days (positive return) and 0 otherwise (further negative return). def __init__(self): # Define features. self.ecdf = EmpiricalCumulativeDensityFunction(3, 252) # Add more windows ecdf_indicators = [EmpiricalCumulativeDensityFunction(3, 21*i) for i in [3, 6, 9]] self.roc = RateOfChange(21) # Add more windows ---> CS roc_indicators = [RateOfChange(21*i) for i in [3, 6, 9, 12]] self.rsi = RelativeStrengthIndex(14) # Add more windows rsi_indicators = [RelativeStrengthIndex(21*i) for i in [3, 6, 9, 12]] self._sma = SimpleMovingAverage(200) self._price = Identity('price') self.sma_distance = IndicatorExtensions.over(self._sma, self._price) # ---> CS #self.ibs = 0 # normalized by ATR #self.turnover = 0 #self.hurst_exponent = 0 self.factor_history = pd.DataFrame() self.factors_to_update = [self.ecdf, self.roc, self.rsi, self._sma, self._price] self.factors_to_record = [self.ecdf, self.ecdf._roc, self.roc, self.rsi, self.sma_distance] self.factors_to_update.extend(ecdf_indicators) self.factors_to_update.extend(roc_indicators) self.factors_to_update.extend(rsi_indicators) self.factors_to_record.extend(ecdf_indicators) self.factors_to_record.extend(roc_indicators) self.factors_to_record.extend(rsi_indicators) self.factors = [] self._prices = pd.Series() def update(self, t, price, in_etf): self.factor_history.loc[t, 'in_etf'] = in_etf # Calculate the latest factor values give the new price. for factor in self.factors_to_update: factor.update(t, price) for factor in self.factors_to_record: if factor.is_ready or (hasattr(factor, 'is_ready2') and factor.is_ready2): self.factor_history.loc[t, factor.name] = factor.current.value # Calculate the latest label values give the new price. self._prices.loc[t] = price self.target_history = (self._prices.shift(-5) > self._prices).iloc[:-5].astype(int) @property def is_ready(self): return all([factor.is_ready or (hasattr(factor, 'is_ready2') and factor.is_ready2) for factor in self.factors_to_update])