Overall Statistics |
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio -0.982 Tracking Error 0.118 Treynor Ratio 0 Total Fees $0.00 |
#from QuantConnect.Data.UniverseSelection import * from Selection.FundamentalUniverseSelectionModel import FundamentalUniverseSelectionModel class SectorBalancedPortfolioConstruction(QCAlgorithm): def Initialize(self): self.SetStartDate(2016, 1, 1) self.SetEndDate(2017, 1, 5) self.SetCash(100000) self.UniverseSettings.Resolution = Resolution.Daily self.SetUniverseSelection(MyUniverseSelectionModel()) self.AddEquity('SPY', Resolution.Daily) self.sma = self.SMA('SPY', 200, Resolution.Daily) self.smaWindow = RollingWindow[float](2) # register sma update callback to our sma window self.sma.Updated += self.UpdateWindow self.SetWarmup(200) def UpdateWindow(self, sender, updated): if self.sma.IsReady: self.smaWindow.Add(self.sma.Current.Value) if self.smaWindow.Count == 2: slope = self.smaWindow[0] - self.smaWindow[1] self.Plot('Custom', 'SMA slope', slope) class MyUniverseSelectionModel(FundamentalUniverseSelectionModel): # add parameter "algo" so our algorithm can be passed in def __init__(self): super().__init__(True, None, None) def SelectCoarse(self, algorithm, coarse): filtered = [x for x in coarse if x.HasFundamentalData and x.Price > 100] return [x.Symbol for x in filtered] def SelectFine(self, algorithm, fine): filtered = [f for f in fine if f.MarketCap > 2e10][:3] for x in filtered: algorithm.Debug(x.Symbol) return [x.Symbol for x in filtered]