Overall Statistics |
Total Trades 12 Average Win 0.27% Average Loss -0.11% Compounding Annual Return 1.462% Drawdown 0.700% Expectancy 1.055 Net Profit 1.466% Sharpe Ratio 1.359 Probabilistic Sharpe Ratio 64.897% Loss Rate 40% Win Rate 60% Profit-Loss Ratio 2.42 Alpha 0.013 Beta -0.008 Annual Standard Deviation 0.009 Annual Variance 0 Information Ratio -1.07 Tracking Error 0.117 Treynor Ratio -1.573 Total Fees $0.00 |
import pandas as pd class EMABasedStrategy(QCAlgorithm): def Initialize(self): #Initialize Dates, Cash, Equities, Fees, Allocation, Parameters, Indicators, Charts # Set Start Date, End Date, and Cash #------------------------------------------------------- self.SetTimeZone(TimeZones.NewYork) #EDIT: Added Timezon self.SetStartDate(2012, 1, 1) # Set Start Date self.SetEndDate(2013, 1, 1) # Set End Date self.SetCash(10000) # Set Strategy Cash self.SetBenchmark("SPY") #------------------------------------------------------- # Set Custom Universe #------------------------------------------------------- self.AddUniverse(self.CoarseSelectionFilter, self.FineSelectionFilter) self.UniverseSettings.Resolution = Resolution.Hour #Needs to change to Resolution.Minute once code works, leaving Daily for now to minimize data self.UniverseSettings.SetDataNormalizationMode = DataNormalizationMode.SplitAdjusted self.UniverseSettings.FeeModel = ConstantFeeModel(0.0) self.UniverseSettings.Leverage = 1 self.SetBrokerageModel(BrokerageName.Alpaca, AccountType.Cash) #EDIT: Added Brokerage, appears to have set fees to zero #------------------------------------------------------- # Set Contants #------------------------------------------------------- self.EMA_Period_Fast = 5 self.EMA_Period_Slow = 50 self.EMA_Period_Medium = 10 self.__numberOfSymbols = 5 self.__numberOfSymbolsFine = 2 #------------------------------------------------------- # Define Percentage Allocation and variables #------------------------------------------------------- self.percentagebuy = 0.02 self.percentagesell = 0.05 self.stopLossPercent = 0.90 self.indicators = {} self.buyOrderTicketBySymbol = {} self.sellOrderTicketBySymbol = {} self.trailingStopLossPrice = {} #------------------------------------------------------- self.Schedule.On(self.DateRules.On(2011, 12, 29), self.TimeRules.At(13, 0), self.SpecificTime); self.daily_equity = pd.Series([]) def SpecificTime(self): #self.Log("SpecificTime: Fired at : {0}".format(self.Time)) self.Liquidate() def CoarseSelectionFilter(self, coarse): sortedByDollarVolume = sorted(coarse, key=lambda x: x.DollarVolume, reverse=True) # sort descending by daily dollar volume return [ x.Symbol for x in sortedByDollarVolume[:self.__numberOfSymbols] ] # return the symbol objects of the top entries from our sorted collection def FineSelectionFilter(self, fine): # sort the data by P/E ratio and take the top 'NumberOfSymbolsFine' sortedByPeRatio = sorted(fine, key=lambda x: x.OperationRatios.OperationMargin.Value, reverse=False) # sort descending by P/E ratio self.universe = [ x.Symbol for x in sortedByPeRatio[:self.__numberOfSymbolsFine] ] # take the top entries from our sorted collection return self.universe def OnSecuritiesChanged(self, changes): # Create indicator for each new security for security in changes.AddedSecurities: self.indicators[security.Symbol] = SymbolData(security.Symbol, self, self.EMA_Period_Fast, self.EMA_Period_Slow, self.EMA_Period_Medium) # for security in changes.RemovedSecurities: # if security.Invested: # self.Liquidate(security.Symbol, "Universe Removed Security") # if security in self.indicators: # self.indicators.pop(security.Symbol, None) def OnData(self, data): #Entry Point for Data and algorithm - Check Data, Define Buy Quantity, Process Volume, Check Portfolio, Check RSI, Execute Buy/Sell orders, Chart Plots for symbol in self.universe: if not data.ContainsKey(symbol): #Tested and Valid/Necessary continue if data[symbol] is None: #Tested and Valid/Necessary continue if not symbol in self.indicators: #Tested and Valid/Necessary continue # Ensure indicators are ready to update rolling windows if not self.indicators[symbol].slow_ema.IsReady: continue # Update EMA rolling windows self.indicators[symbol].fast_ema_window.Add(self.indicators[symbol].get_fast_EMA()) self.indicators[symbol].slow_ema_window.Add(self.indicators[symbol].get_slow_EMA()) self.indicators[symbol].medium_ema_window.Add(self.indicators[symbol].get_medium_EMA()) # Check for Indicator Readiness within Rolling Window #------------------------------------------------------- if not (self.indicators[symbol].fast_ema_window.IsReady and self.indicators[symbol].slow_ema_window.IsReady and self.indicators[symbol].medium_ema_window.IsReady): continue #EXECUTE TRADING LOGIC HERE - if self.Portfolio[symbol].Invested: if self.Portfolio[symbol].IsLong: #self.Debug('symbol in long -->' + str(symbol) + '') if self.indicators[symbol].is_buy_signal_liquidate(): self.Liquidate(symbol) elif self.Portfolio[symbol].Price > self.buyOrderTicketBySymbol[symbol].AverageFillPrice + (self.buyOrderTicketBySymbol[symbol].AverageFillPrice*(1-self.stopLossPercent)) \ and self.Portfolio[symbol].Price > self.trailingStopLossPrice[symbol]: # self.Portfolio[symbol] returns EquityHoldings class updateFields = UpdateOrderFields() updateFields.StopPrice = self.Portfolio[symbol].Price * self.stopLossPercent self.trailingStopLossPrice[symbol] = updateFields.StopPrice self.buyOrderTicketBySymbol[symbol].Update(updateFields) elif self.indicators[symbol].is_sell_signal_liquidate() and self.Portfolio[symbol].IsShort: #self.Debug('sell action ->' + str(symbol)) self.Liquidate(symbol) if self.Portfolio.MarginRemaining > self.percentagebuy * self.Portfolio.TotalPortfolioValue: if not self.Portfolio[symbol].Invested: if self.indicators[symbol].is_buy_signal(): self.buyquantity = round((self.percentagebuy*self.Portfolio.TotalPortfolioValue)/data[symbol].Close) self.ticket = self.MarketOrder(symbol, self.buyquantity) self.buyOrderTicketBySymbol[symbol] = self.ticket self.trailingStopLossPrice[symbol] = self.ticket.AverageFillPrice self.sellOrderTicketBySymbol.pop(symbol,None) #self.Debug('trigger buy ordeer -->' + str(symbol)) elif self.indicators[symbol].is_sell_signal(): self.sellQuantity = round((self.percentagesell*self.Portfolio.TotalPortfolioValue)/data[symbol].Close) self.ticket = self.MarketOrder(symbol, -1*self.sellQuantity) self.sellOrderTicketBySymbol[symbol] = self.ticket self.trailingStopLossPrice[symbol] = self.ticket.AverageFillPrice self.buyOrderTicketBySymbol.pop(symbol,None) #self.Debug('trigger sell ordeer -->' + str(symbol)) def OnOrderEvent(self, orderEvent): order = self.Transactions.GetOrderById(orderEvent.OrderId) #self.Log("{0}: {1}: {2}".format(self.Time, order.Type, orderEvent)) def OnEndOfDay(self): self.daily_equity = self.daily_equity.append(pd.Series(self.Portfolio.TotalPortfolioValue, index=[self.Time])) def OnEndOfAlgorithm(self): self.Log(self.daily_equity.to_string()) class SymbolData(object): rolling_window_length = 2 def __init__(self, symbol, context, fast_ema_period, slow_ema_period, medium_ema_period): self.symbol = symbol self.fast_ema_period = fast_ema_period self.slow_ema_period = slow_ema_period self.medium_ema_period = medium_ema_period self.fast_ema = context.SMA(symbol, self.fast_ema_period, Resolution.Daily) #, fillDataForward = True, leverage = 1, extendedMarketHours = False) self.slow_ema = context.SMA(symbol, self.slow_ema_period, Resolution.Daily) #, fillDataForward = True, leverage = 1, extendedMarketHours = False) self.medium_ema = context.SMA(symbol, self.medium_ema_period, Resolution.Daily) self.fast_ema_window = RollingWindow[float](self.rolling_window_length) self.slow_ema_window = RollingWindow[float](self.rolling_window_length) self.medium_ema_window = RollingWindow[float](self.rolling_window_length) # Warm up EMA indicators history = context.History([symbol], slow_ema_period + self.rolling_window_length, Resolution.Hour) for time, row in history.loc[symbol].iterrows(): self.fast_ema.Update(time, row["close"]) self.slow_ema.Update(time, row["close"]) self.medium_ema.Update(time, row["close"]) # Warm up rolling windows if self.fast_ema.IsReady: self.fast_ema_window.Add(self.fast_ema.Current.Value) if self.slow_ema.IsReady: self.slow_ema_window.Add(self.slow_ema.Current.Value) if self.medium_ema.IsReady: self.medium_ema_window.Add(self.medium_ema.Current.Value) def get_fast_EMA(self): return self.fast_ema.Current.Value def get_slow_EMA(self): return self.slow_ema.Current.Value def get_medium_EMA(self): return self.medium_ema.Current.Value def is_buy_signal(self): if self.medium_ema_window[0] > self.slow_ema_window[0] and \ self.medium_ema_window[1] < self.slow_ema_window[1]: if self.fast_ema_window[0] > self.slow_ema_window[0]: return True def is_sell_signal(self): if self.medium_ema_window[0] < self.slow_ema_window[0] and \ self.medium_ema_window[1] > self.slow_ema_window[1]: if self.fast_ema_window[0] < self.slow_ema_window[0]: return True def is_buy_signal_liquidate(self): return self.fast_ema_window[0] < self.slow_ema_window[0] and \ self.fast_ema_window[1] > self.slow_ema_window[1] def is_sell_signal_liquidate(self): return self.fast_ema_window[0] > self.slow_ema_window[0] and \ self.fast_ema_window[1] < self.slow_ema_window[1]