Overall Statistics |
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio 0 Tracking Error 0 Treynor Ratio 0 Total Fees $0.00 |
# # QuantConnect Basic Template: # Fundamentals to using a QuantConnect algorithm. # # You can view the QCAlgorithm base class on Github: # https://github.com/QuantConnect/Lean/tree/master/Algorithm # import math import numpy as np import pandas as pd import statistics from datetime import datetime, timedelta class BasicTemplateAlgorithm(QCAlgorithm): def Initialize(self): # Set the cash we'd like to use for our backtest # This is ignored in live trading self.SetCash(10000) # Start and end dates for the backtest. # These are ignored in live trading. self.SetStartDate(2017,1,1) self.SetEndDate(2017,1,30) # Add assets you'd like to see self.spy = self.AddEquity("SPY", Resolution.Daily).Symbol self.sso = self.AddEquity("SSO", Resolution.Daily).Symbol self.vix = self.AddSecurity(SecurityType.Option, "VIX", Resolution.Daily) # Define the Schedules self.Schedule.On(self.DateRules.EveryDay("SPY"), self.TimeRules.AfterMarketOpen(self.spy, -45), Action(self.EveryDayBeforeMarketOpen)) self.Schedule.On(self.DateRules.EveryDay("SPY"), self.TimeRules.AfterMarketOpen(self.spy, 90), Action(self.Balance)) def OnData(self, slice): # Simple buy and hold template if not self.Portfolio.Invested: #self.SetHoldings(self.spy, 1) #self.Debug("numpy test >>> print numpy.pi: " + str(np.pi)) #self.Log("Hello World!") self.Log("SSO Close:%s" %self.Securities['SSO'].Close) #self.Log("VIX Close:%s" %self.Securities['VIX'].Close) def EveryDayBeforeMarketOpen(self): self.Log("EveryDayBeforeMarketOpen") def Balance(self): self.Log("Balance")