Overall Statistics |
Total Trades 32 Average Win 0.32% Average Loss -0.17% Compounding Annual Return 149.867% Drawdown 1.800% Expectancy 1.361 Net Profit 3.748% Sharpe Ratio 7.031 Probabilistic Sharpe Ratio 85.029% Loss Rate 19% Win Rate 81% Profit-Loss Ratio 1.91 Alpha 0.143 Beta 0.575 Annual Standard Deviation 0.136 Annual Variance 0.018 Information Ratio -3.64 Tracking Error 0.126 Treynor Ratio 1.664 Total Fees $32.00 Estimated Strategy Capacity $7300000.00 Lowest Capacity Asset HOU R735QTJ8XC9X Portfolio Turnover 26.33% |
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this is QuantConnect's HistoricalReturnsAlphaModel labelled here as CygnetCHR6 from AlgorithmImports import * # this file is only to show how this Alpha works but not actually used. what is used is the compiled version from QuantConnect # this is not imported in main.py class CygnetCHR6Alpha(AlphaModel): '''Uses Historical returns to create insights.''' def __init__(self, *args, **kwargs): '''Initializes a new default instance of the HistoricalReturnsAlphaModel class. Args: lookback(int): Historical return lookback period resolution: The resolution of historical data''' self.lookback = kwargs['lookback'] if 'lookback' in kwargs else 1 self.resolution = kwargs['resolution'] if 'resolution' in kwargs else Resolution.Daily self.predictionInterval = Time.Multiply(Extensions.ToTimeSpan(self.resolution), self.lookback) self.symbolDataBySymbol = {} def Update(self, algorithm, data): '''Updates this alpha model with the latest data from the algorithm. This is called each time the algorithm receives data for subscribed securities Args: algorithm: The algorithm instance data: The new data available Returns: The new insights generated''' insights = [] for symbol, symbolData in self.symbolDataBySymbol.items(): if symbolData.CanEmit: direction = InsightDirection.Flat magnitude = symbolData.Return if magnitude > 0: direction = InsightDirection.Up if magnitude < 0: direction = InsightDirection.Down insights.append(Insight.Price(symbol, self.predictionInterval, direction, magnitude, None)) return insights def OnSecuritiesChanged(self, algorithm, changes): '''Event fired each time the we add/remove securities from the data feed Args: algorithm: The algorithm instance that experienced the change in securities changes: The security additions and removals from the algorithm''' # clean up data for removed securities for removed in changes.RemovedSecurities: symbolData = self.symbolDataBySymbol.pop(removed.Symbol, None) if symbolData is not None: symbolData.RemoveConsolidators(algorithm) # initialize data for added securities symbols = [ x.Symbol for x in changes.AddedSecurities ] history = algorithm.History(symbols, self.lookback, self.resolution) if history.empty: return tickers = history.index.levels[0] for ticker in tickers: symbol = SymbolCache.GetSymbol(ticker) if symbol not in self.symbolDataBySymbol: symbolData = SymbolData(symbol, self.lookback) self.symbolDataBySymbol[symbol] = symbolData symbolData.RegisterIndicators(algorithm, self.resolution) symbolData.WarmUpIndicators(history.loc[ticker]) class SymbolData: '''Contains data specific to a symbol required by this model''' def __init__(self, symbol, lookback): self.Symbol = symbol self.ROC = RateOfChange('{}.ROC({})'.format(symbol, lookback), lookback) self.Consolidator = None self.previous = 0 def RegisterIndicators(self, algorithm, resolution): self.Consolidator = algorithm.ResolveConsolidator(self.Symbol, resolution) algorithm.RegisterIndicator(self.Symbol, self.ROC, self.Consolidator) def RemoveConsolidators(self, algorithm): if self.Consolidator is not None: algorithm.SubscriptionManager.RemoveConsolidator(self.Symbol, self.Consolidator) def WarmUpIndicators(self, history): for tuple in history.itertuples(): self.ROC.Update(tuple.Index, tuple.close) @property def Return(self): return float(self.ROC.Current.Value) @property def CanEmit(self): if self.previous == self.ROC.Samples: return False self.previous = self.ROC.Samples return self.ROC.IsReady def __str__(self, **kwargs): return '{}: {:.2%}'.format(self.ROC.Name, (1 + self.Return)**252 - 1)
#region imports from AlgorithmImports import * #endregion import random from Signals import CygnetSignal class CygnetHighestLoserAlpha(AlphaModel): def __init__(self, algorithm, securities): self.currentHoldingIndex = -1 self.cygnet = None self.algo = algorithm self.myList = securities self.period = timedelta(days=7) self.currentHolding = "" self.newHolding = "" #algorithm.Debug(f"In MyAlphaModelX.__ini__ method {algorithm.signalName}") pass def Update(self, algorithm, data): ''' #This block of code generates insights with random insights = [] m = self.currentHoldingIndex n = random.randint(0, len(self.myList)-1) if (m == n): return [] #myList = ["FB", "AMZN", "AAPM", "MSFT", "NVDA", "GOOG"] algorithm.Debug(f"{n} {self.myList[n]}") if (m != -1): insights.append(Insight(self.myList[m], timedelta(days=1), InsightType.Price, InsightDirection.Flat, None, 999, None, 999 )) insights.append(Insight(self.myList[n], timedelta(days=1), InsightType.Price, InsightDirection.Up, None, 999, None, 999 )) self.currentHolding = n return insights ''' #self.algo.Debug(f"In MyAlphaModelX.Update method {self.algo.Time}") if self.cygnet == None: self.cygnet = CygnetSignal(self.algo, self.myList) self.cygnet.UpdateWithLatestMarketDataFeed(algorithm, data) if (algorithm.Time.hour == 9 and algorithm.Time.minute == 40): self.cygnet.ComputeSignalValues() return [] equitiesCarried = ["Equities carried: "] equitiesExited = ["Equities to be exited: "] equitiesNew = ["New equities to be traded: "] equityToTrade = "" signalValue = 0.0 insights = [] if self.algo.tradeDirection == 1: entryTradeDirection = InsightDirection.Up exitTradeDirection = InsightDirection.Flat if self.algo.tradeDirection == -1: entryTradeDirection = InsightDirection.Down exitTradeDirection = InsightDirection.Flat if self.algo.Time.hour == 15 and self.algo.Time.minute == 40: self.cygnet.ComputeSignalValues() equityToTrade, signalValue = self.cygnet.GetEquityToTrade(self.algo.signalName, self.algo.strat) self.algo.Debug(f"Current holding: {self.currentHolding} Equity to trade: {equityToTrade} Signal Value {signalValue}") if not self.algo.Portfolio.Invested: insights.append(Insight(Symbol.Create(equityToTrade, SecurityType.Equity, Market.USA), self.period, InsightType.Price, entryTradeDirection, None, 1, None, 1 )) else: for security in self.algo.Portfolio.Values: if security.Symbol.Value == equityToTrade and not security.Invested: equitiesNew.append(security.Symbol.Value) insights.append(Insight(security.Symbol, self.algo.insightPeriod, InsightType.Price, entryTradeDirection, None, 1, None, 1 )) self.currentHolding = equityToTrade if self.algo.Time.hour == 15 and self.algo.Time.minute == 57: for security in self.algo.Portfolio.Values: insights.append(Insight(security.Symbol, self.algo.insightPeriod, InsightType.Price, InsightDirection.Flat, None, None, None, None)) return insights def OnSecuritiesChanged(self, algorithm, changes): '''Event fired each time the we add/remove securities from the data feed Args: algorithm: The algorithm instance that experienced the change in securities changes: The security additions and removals from the algorithm''' pass
import pandas as pd import datetime from datetime import datetime from AlgorithmImports import * from dateutil.relativedelta import relativedelta from io import StringIO from scipy import stats from statistics import mean def get_historical_close(symbol: str, timedelta: dict, hist: pd.DataFrame, end_date): ''' Accepts a symbol, a time delta to look in the past like {months: 6} or {years: 1} and the history dataframe. Returns the closing price of the symbol on or immediately after the time delta. Assumes that the history dataframe is indexed on symbol then time ascending. ''' single_symbol_data = hist[hist.index.get_level_values("symbol") == symbol] return single_symbol_data[single_symbol_data.index.get_level_values("time") >= end_date - relativedelta(**timedelta)].iloc[0].close def reorder_columns(dataframe, col_name, position): """Reorder a dataframe's column. Args: dataframe (pd.DataFrame): dataframe to use col_name (string): column name to move position (0-indexed position): where to relocate column to Returns: pd.DataFrame: re-assigned dataframe """ temp_col = dataframe[col_name] dataframe = dataframe.drop(columns=[col_name]) dataframe.insert(loc=position, column=col_name, value=temp_col) return dataframe def calculate_hqm_score(df): momentum_percentiles = [] # calculate percentiles of period returns time_periods = ['3m', '1m'] # ['1y', '6m', '3m', '1m'] for time_period in time_periods: momentum_percentiles.append(df[f'return_{time_period}_percentile']) return sum(momentum_percentiles) #mean(momentum_percentiles) class CygnetCM12Alpha(AlphaModel): def __init__(self, algorithm, securities): #algorithm.Debug("Begin of CygnetHQMAlpha.__init__()") self.algo = algorithm self.myList = securities self.lastTradeTime = self.algo.Time - timedelta(days=31) self.tradeFrequency = timedelta(days=7) self.period = timedelta(days=31) self.df = pd.DataFrame(columns=["Symbol", "Name", "Sector"]) self.df.Symbol = self.myList self.df.Name = "" self.df.Sector = "" self.df = self.df.set_index("Symbol") self.df = self.df.sort_index() pass def Update(self, algorithm, data): # Return no insights if it's not time to rebalance if (self.algo.Time - self.lastTradeTime) < self.tradeFrequency: return [] #self.algo.Debug("Begin of Update()") self.lastTradeTime = self.algo.Time df = self.ComputeSignal() #maxNumOfHoldings = 12 #startingRank = 5 #maxNumOfHoldings = min(len(df.index), maxNumOfHoldings) #equitiesToTrade = [x for x in df.index[startingRank:maxNumOfHoldings] ] minNumOfHoldings = 5 x = 10 while (True): df2 = df [df['return_3m_percentile'] < x] df2 = df2 [df2['return_1m_percentile'] > (100-x)] if len(df2) >= minNumOfHoldings: break else: x = x+5 df2 = df2.sort_values(by='return_1m_percentile', ascending=False) equitiesToTrade = [x for x in df2.index] #self.algo.Debug("New equities to acquire:") self.algo.Debug(equitiesToTrade) insights = [] #VR 4/1/23 # Close old positions if they aren't in equitiesToTrade list for security in algorithm.Portfolio.Values: if security.Invested and security.Symbol not in equitiesToTrade: insights.append(Insight(security.Symbol, self.algo.insightPeriod, InsightType.Price, InsightDirection.Flat, None, None, None, None)) # figure out how many shares to buy sumOfClosingPrices = df2["close_today"][:minNumOfHoldings].sum() numOfSharesToBuy = math.floor(algorithm.Portfolio.TotalPortfolioValue / sumOfClosingPrices) for sym in equitiesToTrade: if not security.Invested: # if it is already in portfolio, do not buy again self.algo.MarketOrder(sym, numOfSharesToBuy) return insights def OnSecuritiesChanged(self, algorithm, changes): pass def ComputeSignal(self): #self.algo.Debug("Begin of ComputeSignal()") end_date = self.algo.Time #datetime.datetime(2022, 4, 11) # Set Start Date start_date = end_date - timedelta(days=190) self.algo.Debug(f"ComputeSignal Start date {start_date} End date {end_date}") #return None histData = self.algo.History(self.myList, start_date, end_date, Resolution.Daily)["close"].unstack(level = 0) #this block of code renames QuantConnect security identifiers to familiar stock symbols newCols = [] for x in histData.columns: newCols.append(str(self.algo.Symbol(x))) histData.columns = newCols #self.algo.Debug(f"Point 2B {histData.shape}") histData = histData.transpose() #self.algo.Debug(f"Point 2A Histdata shape: {histData.shape}") momentum = pd.DataFrame(index=histData.index, columns=["close_today", "close_1m", "close_3m", "close_6m"]) momentum = momentum.fillna(0.0) #momentum["EquitySymbol"] = "Unknown" #momentum["EquitySymbol"] = momentum["symbol"].apply (lambda x: str(self.algo.Symbol(x))) for i in range(len(momentum)): momentum.iloc[i, 0] = histData.iloc[i, -1] momentum.iloc[i, 1] = histData.iloc[i, -21] momentum.iloc[i, 2] = histData.iloc[i, -63] momentum.iloc[i, 3] = histData.iloc[i, -126] # calculate percentiles of period returns time_periods = ['3m', '1m'] numOfBins = 100 for time_period in time_periods: momentum[f'return_{time_period}'] = (momentum.close_today - momentum[f'close_{time_period}']) / momentum[f'close_{time_period}'] #momentum[f'return_{time_period}_percentile'] = momentum[f'return_{time_period}'].apply (lambda x: stats.percentileofscore(momentum[f'return_{time_period}'], x)) momentum[f'return_{time_period}_percentile'] = pd.qcut(momentum[f'return_{time_period}'], numOfBins, labels = False) # divvy up into bins momentum["HQM Score"] = momentum.apply (calculate_hqm_score, axis = 1) #for i in range(len(momentum)): # momentum["EquitySymbol"][i] = str(qb.Symbol(momentum["symbol"][i])) #momentum = momentum.set_index("EquitySymbol") momentum = momentum.sort_values(by="HQM Score", ascending = False) momentum = reorder_columns(momentum, "HQM Score", 0) self.algo.Debug(momentum.shape) return momentum
import pandas as pd import datetime from datetime import datetime from AlgorithmImports import * from dateutil.relativedelta import relativedelta from io import StringIO from scipy import stats from statistics import mean '''Notes on performance of CygCM12Alpha2 CM12-Var2-Paper is the program used to gen these returns Risk Mgmt: 1 "NullRiskMgmt", 2 "TrailingStop5%", 3 "Maxdrawdown4%", 4 "MaxUnrlzd4%", 5 "Bracketed4%Gain6%Loss" NullRiskMgmt has the best performance date: 4/14/23 In this study, the portfolio is equal share portofolio (as oppsoed equal $ value for each stock) Items in ranks 6 thru 12 (7 items) were traded CygnetCM12Alpha2 (Order paced using market orders, using equal # of shares for each); it picks ~5 to 10 stocks and trdes them each week Capital 100k Risk Mgmt 4 works the best Net profits of CM12 strategy; RM vs. Year; net profits are in % Risk Mgmt 2017 2018 2019 2020 2021 2022 Cum Return Ann. Return 2023 (upto 4/14/23) 1 -8.3 -13.4 11.5 -36.0 1.9 34.5 -22% -4.1% 9.65 2 -5.6 -8.4 11.0 -13.7 0.2 29.1 7% 1.2% 9.25 3 -5.9 -6.3 11.7 -22.7 -0.3 36.6 4% 0.6% 8.45 4 -8.6 -13.5 12.2 -20.5 -1.0 33.7 -7% -1.1% 7.47 5 -5.7 -9.8 10.9 -24.0 -1.9 29.8 -9% -1.5% 10.06 Grand Total -34.1 -51.4 57.3 -116.9 -1.0 163.8 SP500 (Nom) 20 -6.24 28.88 16.26 26.89 -19.44 72% 9.5% SP500 (TR) 21.83 -4.38 31.49 18.4 28.71 -18.11 91% 11.4% The above returns show that this strategy has no edge; over a long run. However, it seems to excellent peformance in 2022 which is a down year. Does it mean that this strategy works well in a bear / down market? But then, it did not work well in 2018 which was a down year. ''' def get_historical_close(symbol: str, timedelta: dict, hist: pd.DataFrame, end_date): ''' Accepts a symbol, a time delta to look in the past like {months: 6} or {years: 1} and the history dataframe. Returns the closing price of the symbol on or immediately after the time delta. Assumes that the history dataframe is indexed on symbol then time ascending. ''' single_symbol_data = hist[hist.index.get_level_values("symbol") == symbol] return single_symbol_data[single_symbol_data.index.get_level_values("time") >= end_date - relativedelta(**timedelta)].iloc[0].close def reorder_columns(dataframe, col_name, position): """Reorder a dataframe's column. Args: dataframe (pd.DataFrame): dataframe to use col_name (string): column name to move position (0-indexed position): where to relocate column to Returns: pd.DataFrame: re-assigned dataframe """ temp_col = dataframe[col_name] dataframe = dataframe.drop(columns=[col_name]) dataframe.insert(loc=position, column=col_name, value=temp_col) return dataframe def calculate_hqm_score(df): momentum_percentiles = [] # calculate percentiles of period returns time_periods = ['1m', '3m'] # ['1y', '6m', '3m', '1m'] for time_period in time_periods: momentum_percentiles.append(df[f'return_{time_period}_percentile']) return sum(momentum_percentiles) #mean(momentum_percentiles) def rebound_score(df): # calculate a rebound score based on how steep the 3m decline is and how steep 1 m recover is pass def populateHisotrycalPriceData(momentum, histData, intervalDays, closePriceColumnName): #intervalDays = 30, 91, 182 #closePriceColumnName are close_1m, close_3m, and close_6m endDate = histData.columns[-1] # the last column header is the latest /end date of the data while(True): lookbackDate = endDate - relativedelta(days=intervalDays) isLookbackDateInHistData = histData.columns.isin([lookbackDate]).sum() print(str(lookbackDate) + " " + str(isLookbackDateInHistData)) if isLookbackDateInHistData == 1: momentum[closePriceColumnName] = histData[lookbackDate] break else: intervalDays = intervalDays - 1 class CygnetCM12Alpha2(AlphaModel): def __init__(self, algorithm, securities): #algorithm.Debug("Begin of CygnetHQMAlpha.__init__()") self.algo = algorithm self.myList = securities self.lastTradeTime = self.algo.Time - timedelta(days=31) self.tradeFrequency = timedelta(days=1) self.period = timedelta(days=31) self.df = pd.DataFrame(columns=["Symbol", "Name", "Sector"]) self.df.Symbol = self.myList self.df.Name = "" self.df.Sector = "" self.df = self.df.set_index("Symbol") self.df = self.df.sort_index() self.spy = self.algo.AddEquity("SPY") self.weekdayNames = ["Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"] self.daysToNextBusinessDay = [1, 1, 1, 1, 3, 2, 1] pass def Update(self, algorithm, data): # Return no insights if it's not time to rebalance if (self.algo.Time - self.lastTradeTime) < self.tradeFrequency: return [] insights = [] self.lastTradeTime = self.algo.Time #self.algo.Debug(f"{self.algo.Time} {self.weekdayNames[self.algo.Time.weekday()]}") ''' Here are date/times of callbacks to Update function; note that due to holiday, no callback was made on 1/16 Two mysteries - sometimes Sat callbacks do not happen and sometimes time of callback is 9:31 instead of 0:00 Date Time Day Date Time Day Date Time Day Date Time Day Date Time Day 1/3/2023 0:00:00 Tue 1/9/2023 0:00:00 Mon 1/17/2023 0:00:00 Tue 1/23/2023 9:31:00 Mon 1/30/2023 0:00:00 Mon 1/4/2023 0:00:00 Wed 1/10/2023 0:00:00 Tue 1/18/2023 0:00:00 Wed 1/24/2023 9:31:00 Tue 1/31/2023 0:00:00 Tue 1/5/2023 0:00:00 Thu 1/11/2023 0:00:00 Wed 1/19/2023 0:00:00 Thu 1/25/2023 9:31:00 Wed 2/1/2023 0:00:00 Wed 1/6/2023 0:00:00 Fri 1/12/2023 0:00:00 Thu 1/20/2023 0:00:00 Fri 1/26/2023 9:31:00 Thu 2/2/2023 0:00:00 Thu 1/7/2023 0:00:00 Sat 1/13/2023 0:00:00 Fri 1/21/2023 0:00:00 Sat 1/27/2023 9:31:00 Fri 2/3/2023 0:00:00 Fri 1/14/2023 0:00:00 Sat 2/4/2023 0:00:00 Sat ''' #if self.algo.Time.weekday() == 5: # trading_day = datetime(self.algo.Time.year, self.algo.Time.month, self.algo.Time.day) + relativedelta(days=2) #else: # trading_day = datetime(self.algo.Time.year, self.algo.Time.month, self.algo.Time.day) #if isMarketOpen == False and trading_day.weekday() <= 4: # self.algo.Debug(f" {trading_day} {self.weekdayNames[trading_day.weekday()]} is a holiday; market is closed") weekdayNum = self.algo.Time.weekday() #0=Mon, 1=Tue 2=Wed 3=Thu 4=Fri 5=Sat 6=Sun weekdayName = self.weekdayNames[weekdayNum] isMarketOpen = True isMarketOpenNextDay = True trading_day = datetime(self.algo.Time.year, self.algo.Time.month, self.algo.Time.day) isMarketOpen = self.spy.Exchange.Hours.IsDateOpen(trading_day) next_business_day = trading_day + relativedelta(days=self.daysToNextBusinessDay[weekdayNum]) isMarketOpenNextBusinessDay = self.spy.Exchange.Hours.IsDateOpen(next_business_day) issueClosingOrders = False issueOpeningOrders = False if (weekdayName == "Thu" and isMarketOpenNextBusinessDay == False): # if markets are closed on Fri issueClosingOrders = True if (weekdayName == "Fri" and isMarketOpen == True): # if Friday and markets are open issueClosingOrders = True if (weekdayName == "Sat" and isMarketOpenNextBusinessDay == False): # if markets are closed on Monday issueOpeningOrders = True if (weekdayName == "Mon" and isMarketOpen == True): # if markets are open on Monday issueOpeningOrders = True ''' This works for Resolution.Daily OnData() call backs but not for Update() issueClosingOrders = False issueOpeningOrders = False if (self.algo.Time.weekday() == 3 and (isMarketOpen == False or isMarketOpenNextDay == False)): # if markets are closed on Thu or Fri issueClosingOrders = True if (self.algo.Time.weekday() == 4 and isMarketOpen == True): # if markets are open on Friday issueClosingOrders = True if (self.algo.Time.weekday() == 4 and isMarketOpen == False): # if Friday and market is closed issueOpeningOrders = True if (self.algo.Time.weekday() == 5): #Sat callback for OnOpen order for the next trading day issueOpeningOrders = True # 0 is monday, 4 is Fri, 6 is sunday; execute this code only on Friday to sell on Friday at close if thrusday is callback day and thursday is holiday, there will not be a all back on Friday that means issue closing orders on thursday, they will execute on Friday at close If friday is callback day and Friday is holiday, then open positions on Friday instead of Saturday callback openonmarket orders will execute monday morning ''' #this is called at the first minute of the day, i.e. 0 hours, 0 minutes # first call comes (in the week) on Tuesday's first minute (with Monday's close info) and last call comes on Saturday (with Friday's close info) # if Friday happens to be closed (like on Good Friday), the call for Thursday's close comes on Friday # so you issue position closing orders on Friday and issue buy orders on Saturday if issueClosingOrders == True: self.algo.Debug(f"Closing positions with MarketOnCloseOrders {self.weekdayNames[trading_day.weekday()]}") for security in algorithm.Portfolio.Values: if security.Invested: # and security.Symbol not in equitiesToTrade: qty = self.algo.Portfolio[security.Symbol].Quantity self.algo.MarketOnCloseOrder(security.Symbol, -1*qty) #insights.append(Insight(security.Symbol, self.algo.insightPeriod, InsightType.Price, InsightDirection.Flat, None, None, None, None)) if issueOpeningOrders == True: self.algo.Debug(f"Opening positions with MarketOnOpenOrders on {self.weekdayNames[trading_day.weekday()]}") df = self.ComputeSignal() #maxNumOfHoldings = 12 #startingRank = 5 #maxNumOfHoldings = min(len(df.index), maxNumOfHoldings) #equitiesToTrade = [x for x in df.index[startingRank:maxNumOfHoldings] ] maxNumOfHoldings = 8 #use this code to buy the best perforing # df2 = df[:minNumOfHoldings] #use this block of code to pick poor q perf and good month perf binNum = 6 # there are 20 bins from 1 thru 20; higher the number, the better it is while (True): df2 = df [df['return_3m_percentile'] <= binNum] # start with first 6 worst bins (1 thru 6) df2 = df2 [df2['return_1m_percentile'] >= 18] # pick the top 3 bins for 1m perf if len(df2) >= maxNumOfHoldings: break else: binNum = binNum + 1 if binNum == 20: break df2 = df2.sort_values(by="return_1m_percentile", ascending=False)[:maxNumOfHoldings] #df2 = df2.sort_values(by='return_1m_percentile', ascending=False) equitiesToTrade = [x for x in df2.index] # figure out how many shares to buy sumOfClosingPrices = df2["close_today"].sum() numOfSharesToBuy = math.floor(algorithm.Portfolio.TotalPortfolioValue / sumOfClosingPrices) #self.algo.Debug("New equities to acquire:") self.algo.Debug(equitiesToTrade) for sym in equitiesToTrade: #if self.algo.Portfolio[sym].Quantity == 0: self.algo.MarketOnOpenOrder(sym, numOfSharesToBuy) return insights def OnSecuritiesChanged(self, algorithm, changes): pass def ComputeSignal(self): #self.algo.Debug("Begin of ComputeSignal()") end_date = self.algo.Time #datetime.datetime(2022, 4, 11) # Set Start Date start_date = end_date - timedelta(days=190) # 190 days is calendar days #self.algo.Debug(f"ComputeSignal Start date {start_date} End date {end_date}") #return None histData = self.algo.History(self.myList, start_date, end_date, Resolution.Daily)["close"].unstack(level = 0) # this is important to align dates with closing prices (see main.py for a lengthy write up on quantconnect times) histData["Date"] = histData.index #histData = reorder_columns(histData, "Date", 0) histData["Date"] = histData["Date"].apply(lambda x: x - relativedelta(days=1) ) # decrease dates by 1 to compensate for QuantConnect way histData = histData.set_index("Date") #histData.tail() #this block of code renames QuantConnect security identifiers to familiar stock symbols newCols = [] for x in histData.columns: newCols.append(str(self.algo.Symbol(x))) histData.columns = newCols #self.algo.Debug(f"Point 2B {histData.shape}") histData = histData.transpose() #self.algo.Debug(f"Point 2A Histdata shape: {histData.shape}") momentum = pd.DataFrame(index=histData.index, columns=["close_today", "close_1m", "close_3m", "close_6m"]) momentum = momentum.fillna(0.0) #momentum["EquitySymbol"] = "Unknown" #momentum["EquitySymbol"] = momentum["symbol"].apply (lambda x: str(self.algo.Symbol(x))) myDate = histData.columns[-1] # the latest date (close to now) momentum["close_today"] = histData[myDate] #last column populateHisotrycalPriceData(momentum, histData, 30, "close_1m") populateHisotrycalPriceData(momentum, histData, 91, "close_3m") populateHisotrycalPriceData(momentum, histData, 182, "close_6m") #momentum.iloc[:, 0] = histData.iloc[:, -1] # last column in histData #momentum.iloc[:, 1] = histData.iloc[:, -21] #momentum.iloc[:, 2] = histData.iloc[:, -63] #momentum.iloc[:, 3] = histData.iloc[:, -126] # calculate percentiles of period returns time_periods = ['1m', '3m', '6m'] numOfBins = 20 for time_period in time_periods: momentum[f'return_{time_period}'] = (momentum.close_today - momentum[f'close_{time_period}']) / momentum[f'close_{time_period}'] #momentum[f'return_{time_period}_percentile'] = momentum[f'return_{time_period}'].apply (lambda x: stats.percentileofscore(momentum[f'return_{time_period}'], x)) momentum[f'return_{time_period}_percentile'] = pd.qcut(momentum[f'return_{time_period}'], numOfBins, labels = False) # divvy up into bins momentum[f'return_{time_period}_percentile'] = momentum[f'return_{time_period}_percentile'] + 1 # get rid of zero base with starting with 1 momentum["HQM Score"] = momentum.apply (calculate_hqm_score, axis = 1) #for i in range(len(momentum)): # momentum["EquitySymbol"][i] = str(qb.Symbol(momentum["symbol"][i])) #momentum = momentum.set_index("EquitySymbol") momentum = momentum.sort_values(by="HQM Score", ascending = False) momentum = reorder_columns(momentum, "HQM Score", 0) #self.algo.Debug(momentum.shape) return momentum ''' end_date = self.algo.Time #datetime.datetime(2022, 4, 11) # Set Start Date myList = ["v=111", "v=121", "v=161", "v=131", "v=141", "v=171"] myList = ["v%3D111", "v%3D121", "v%3D161", "v%3D131", "v%3D141", "v%3D171"] tdf = pd.DataFrame() for x in myList: #URL = "https://elite.finviz.com/export.ashx?" + x + "&f=cap_midover,geo_usa,ta_perf_52w50u&ft=4&o=-instown&auth=mcsic2021@gmail.com" # this corresponds to a screener setup in Finviz #URL = "https://elite.finviz.com/export.ashx?" + x + "&ft=4&t=ALGN,CDW,DHR,DOV,ETN,FTNT,GOOG,GOOGL,GRMN,INTU,IT,JCI,LLY,PKI,PNR,RHI,RMD,TGT,WAT,WST&auth=mcsic2021@gmail.com" # this corresponds to a portfolio setup in Finviz #URL = "https://elite.finviz.com/export.ashx?" + x + "&ft=4&t=TX,TSLA,AAPL,SU,CTRA,CAH,LOW,MRK,CSCO,PG,IBM,NVDA,AMAT,CSL,GBTC,AMCR,BMY,MMM,SPRE,DVN,PYPL,ALB,MSFT,EVGO,COIN,CRWD,CRM,AMD,WBA,SNOW,DNA,AMAGX,CLOU,AMANX,META,SQ,ABNB,GOOGL,VCYT,RIVN&auth=mcsic2021@gmail.com" #this is MCSIC holdings on 3/14/23 #URL = "https://elite.finviz.com/export.ashx?" + x + "&ft=4&t=AAPL,ABNB,ALB,AMAGX,AMANX,AMAT,AMCR,AMD,BMY,CAH,CLOU,COIN,CRM,CSCO,CSL,CTRA,DNA,DVN,EVGO,GBTC,GOOGL,IBM,LOW,META,MMM,MRK,MSFT,NVDA,PG,PYPL,RIVN,SNOW,SPRE,SQ,SU,TSLA,TX,VCYT,WBA&auth=mcsic2021@gmail.com" #URL = "https://elite.finviz.com/export.ashx?" + x + "&f=idx_sp500&auth=mcsic2021@gmail.com" # this corresponds to all the stocks in SP500 index #URL = "https://elite.finviz.com/export.ashx?" + x + "&t=VZ,TLRY,SPCE,RGTI,QUBT,PTON,MSFT,MPW,LOW,IONQ,HON,GOOG,FSLY,EVGO,DNA,CSCO,COIN,CHGG,APPN,AMAT,AI,PHM,LEN,MTH,DHI,TOL,CCS,RIVN,GOEV&auth=mcsic2021@gmail.com" self.algo.Download('https://raw.githubusercontent.com/barryplasmid/CM12/main/finvizexport-v%3D171-04102023.csv') print(URL) response = requests.get(URL) fileName = f"finvizexport-{x}.csv" #if run from local machine use "C:\\Users\\unk20\\OneDrive\\Data\\QuantTrading\\CSVFiles\\finvizexport.csv" mydopfenf(fileName, "wb").write(response.content) #files.download(fileName) time.sleep(5) # sleep is needed for proper functioning of this df = pd.read_csv(fileName) #print (df.index) if x == "v=111": #first iteration tdf = df else: tdf = pd.merge(tdf, df, how='outer') #download from Finviz the "Overview", "Valuation", "Financial", "Ownership", "Performance", and "Technical" tabs and combine them into one dataframe #print(URL) print(f"{x} {df.shape} {tdf.shape}") tdf.set_index("No.", inplace=True) tdf.to_csv(fileName)'''
import pandas as pd import datetime from datetime import datetime from AlgorithmImports import * from dateutil.relativedelta import relativedelta from io import StringIO from scipy import stats from statistics import mean '''Notes on performance of CygCM12Alpha3 Due to getting data from a finviz exported file, we cannot run backtesting with this alpha Var3 : add configurable (1 week or 2 wee) hold period ''' class CygnetCM12Alpha3(AlphaModel): def __init__(self, algorithm, securities): #algorithm.Debug("Begin of CygnetHQMAlpha.__init__()") self.algo = algorithm self.myList = securities self.lastTradeTime = self.algo.Time - timedelta(days=31) self.tradeFrequency = timedelta(days=1) self.period = timedelta(days=31) self.df = pd.DataFrame(columns=["Symbol", "Name", "Sector"]) self.df.Symbol = self.myList self.df.Name = "" self.df.Sector = "" self.df = self.df.set_index("Symbol") self.df = self.df.sort_index() self.spy = self.algo.AddEquity("SPY") self.weekdayNames = ["Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"] self.daysToNextBusinessDay = [1, 1, 1, 1, 3, 2, 1] pass def Update(self, algorithm, data): # Return no insights if it's not time to rebalance if (self.algo.Time - self.lastTradeTime) < self.tradeFrequency: return [] insights = [] self.lastTradeTime = self.algo.Time weekdayNum = self.algo.Time.weekday() #0=Mon, 1=Tue 2=Wed 3=Thu 4=Fri 5=Sat 6=Sun weekdayName = self.weekdayNames[weekdayNum] isMarketOpen = True isMarketOpenNextDay = True trading_day = datetime(self.algo.Time.year, self.algo.Time.month, self.algo.Time.day) #trading_day = trading_day - relativedelta(days=1) isMarketOpen = self.spy.Exchange.Hours.IsDateOpen(trading_day) daysToNextBizDay = self.daysToNextBusinessDay[weekdayNum] next_business_day = trading_day + relativedelta(days=daysToNextBizDay) isMarketOpenNextBusinessDay = self.spy.Exchange.Hours.IsDateOpen(next_business_day) issueClosingOrders = False issueOpeningOrders = False if (weekdayName == "Thu" and isMarketOpenNextBusinessDay == False): # if markets are closed on Fri issueClosingOrders = True if (weekdayName == "Fri" and isMarketOpen == True): # if Friday and markets are open issueClosingOrders = True if (weekdayName == "Sat" and isMarketOpenNextBusinessDay == False): # if markets are closed on Monday issueOpeningOrders = True if (weekdayName == "Mon" and isMarketOpen == True): # if markets are open on Monday issueOpeningOrders = True if issueClosingOrders == True: self.algo.Debug(f"Closing positions with MarketOnCloseOrders {self.weekdayNames[trading_day.weekday()]}") for security in algorithm.Portfolio.Values: if security.Invested: # and security.Symbol not in equitiesToTrade: #find out when it was purchased qty = self.algo.Portfolio[security.Symbol].Quantity purchase_date = None orders = self.algo.Portfolio.Transactions.GetOrders() for order in orders: if order.Symbol == security.Symbol and order.Status == OrderStatus.Filled and order.Direction == OrderDirection.Buy: purchase_date = order.Time self.algo.Debug(f"{security.Symbol} {purchase_date} {qty}") self.algo.MarketOnCloseOrder(security.Symbol, -1*qty) #insights.append(Insight(security.Symbol, self.algo.insightPeriod, InsightType.Price, InsightDirection.Flat, None, None, None, None)) if issueOpeningOrders == True: self.algo.Debug(f"Opening positions with MarketOnOpenOrders on {self.weekdayNames[trading_day.weekday()]}") fileDate = None if (weekdayName == "Mon"): fileDate = trading_day - relativedelta(days=3) if (weekdayName == "Sat"): fileDate = trading_day - relativedelta(days=1) sp500_analysis_filename = str(fileDate.month).zfill(2) + str(fileDate.day).zfill(2) + str(fileDate.year) df = self.ComputeSignal(sp500_analysis_filename) equitiesToTrade = [x for x in df.index] # figure out how many shares to buy sumOfClosingPrices = df["Price"].sum() if sumOfClosingPrices != 0.0: numOfSharesToBuy = math.floor(algorithm.Portfolio.TotalPortfolioValue / sumOfClosingPrices) else: numOfSharesToBuy = 10 #self.algo.Debug("New equities to acquire:") self.algo.Debug(equitiesToTrade) for sym in equitiesToTrade: #if self.algo.Portfolio[sym].Quantity == 0: self.algo.MarketOnOpenOrder(sym, numOfSharesToBuy) return insights def OnSecuritiesChanged(self, algorithm, changes): pass #for security in changes.RemovedSecurities: # if security.Symbol in self.symbol_data_by_symbol: # symbol_data = self.symbol_data_by_symbol.pop(security.Symbol, None) # if symbol_data: # symbol_data.dispose() def ComputeSignal(self, fileDate: str): #URL = "https://elite.finviz.com/export.ashx?" + x + "&t=VZ,TLRY&auth=mcsic2021@gmail.com" #URL = 'https://raw.githubusercontent.com/barryplasmid/PublicLists/main/sp500-daily-analysis-04152023.csv' URL = "https://raw.githubusercontent.com/barryplasmid/PublicLists/main/sp500-daily-analysis-" + fileDate + ".csv" csvContent = self.algo.Download(URL) df = pd.read_csv(StringIO(csvContent)) df = df.set_index("Ticker") maxNumOfHoldings = 8 # 8 seems to be most optimal when backtested with 6, 7, 8, 9, 10 holdings #use this block of code to pick poor q perf and good month perf binNum = 15 # there are 20 bins from 1 thru 20; higher the number, the worse it is # unlike, Alpha2, the output here is ranked the opposite; i.e., lower numeric rank is better df2 = pd.DataFrame() while (True): df2 = df [df["Performance (Quarter)_dr"] >= binNum] # start with first 6 worst bins (15 thru 20) df2 = df2 [df2["Performance (Month)_dr"] <= 3] # pick the top 3 bins for 1m perf if len(df2) >= maxNumOfHoldings: break else: binNum = binNum - 1 if binNum == 0: break myColumns=["Price", "Performance (Month)_dr", "Performance (Quarter)_dr", "Combined_Score"] df3 = pd.DataFrame(index=df2.index, columns=myColumns) #momentum = momentum.fillna(0.0) df3["Price"] = df2["Price"] df3["Performance (Month)_dr"] = df2["Performance (Month)_dr"] df3["Performance (Quarter)_dr"] = df2["Performance (Quarter)_dr"] df3["Combined_Score"] = df2["Combined_Score"] df3 = df3.sort_values(by="Combined_Score")[:maxNumOfHoldings] return df3
#region imports from AlgorithmImports import * #endregion import random from Signals import CygnetSignal class CygnetCM1RotationAlpha(AlphaModel): def __init__(self, algorithm, securities): self.currentHoldingIndex = -1 self.cygnet = None self.algo = algorithm self.myList = securities self.period = timedelta(days=7) self.currentHolding = "" self.newHolding = "" #algorithm.Debug(f"In MyAlphaModelX.__ini__ method {algorithm.signalName}") pass def Update(self, algorithm, data): ''' #This block of code generates insights with random insights = [] m = self.currentHoldingIndex n = random.randint(0, len(self.myList)-1) if (m == n): return [] #myList = ["FB", "AMZN", "AAPM", "MSFT", "NVDA", "GOOG"] algorithm.Debug(f"{n} {self.myList[n]}") if (m != -1): insights.append(Insight(self.myList[m], timedelta(days=1), InsightType.Price, InsightDirection.Flat, None, 999, None, 999 )) insights.append(Insight(self.myList[n], timedelta(days=1), InsightType.Price, InsightDirection.Up, None, 999, None, 999 )) self.currentHolding = n return insights ''' #self.algo.Debug(f"In MyAlphaModelX.Update method {self.algo.Time}") if self.cygnet == None: self.cygnet = CygnetSignal(self.algo, self.myList) self.cygnet.UpdateWithLatestMarketDataFeed(algorithm, data) if (algorithm.Time.hour == 9 and algorithm.Time.minute == 40): self.cygnet.ComputeSignalValues() return [] equitiesCarried = ["Equities carried: "] equitiesExited = ["Equities to be exited: "] equitiesNew = ["New equities to be traded: "] equityToTrade = "" signalValue = 0.0 insights = [] if self.algo.tradeDirection == 1: entryTradeDirection = InsightDirection.Up exitTradeDirection = InsightDirection.Flat if self.algo.tradeDirection == -1: entryTradeDirection = InsightDirection.Down exitTradeDirection = InsightDirection.Flat if self.algo.Time.hour == 15 and self.algo.Time.minute == 50: self.cygnet.ComputeSignalValues() equityToTrade, signalValue = self.cygnet.GetEquityToTrade(self.algo.signalName, self.algo.strat) self.algo.Debug(f"Current holding: {self.currentHolding} Equity to trade: {equityToTrade} Signal Value {signalValue}") if not self.algo.Portfolio.Invested: insights.append(Insight(Symbol.Create(equityToTrade, SecurityType.Equity, Market.USA), self.period, InsightType.Price, entryTradeDirection, None, 1, None, 1 )) else: for security in self.algo.Portfolio.Values: if security.Invested and security.Symbol.Value == equityToTrade: equitiesCarried.append(security.Symbol.Value) if security.Invested and security.Symbol.Value != equityToTrade: equitiesExited.append(security.Symbol.Value) insights.append(Insight(security.Symbol, self.algo.insightPeriod, InsightType.Price, InsightDirection.Flat, None, None, None, None)) if security.Symbol.Value == equityToTrade and not security.Invested: equitiesNew.append(security.Symbol.Value) insights.append(Insight(security.Symbol, self.algo.insightPeriod, InsightType.Price, entryTradeDirection, None, 1, None, 1 )) self.currentHolding = equityToTrade return insights def OnSecuritiesChanged(self, algorithm, changes): '''Event fired each time the we add/remove securities from the data feed Args: algorithm: The algorithm instance that experienced the change in securities changes: The security additions and removals from the algorithm''' pass
#region imports from AlgorithmImports import * #endregion import pandas as pd import datetime from dateutil.relativedelta import relativedelta from io import StringIO from scipy import stats from statistics import mean import time def reorder_columns(dataframe, col_name, position): temp_col = dataframe[col_name] dataframe = dataframe.drop(columns=[col_name]) dataframe.insert(loc=position, column=col_name, value=temp_col) return dataframe class CygnetCM2MomentumAlpha(AlphaModel): def __init__(self, algorithm, securities): self.algo = algorithm self.myList = securities self.lastTradeTime = self.algo.Time - timedelta(days=31) self.tradeFrequency = timedelta(days=30) self.period = timedelta(days=31) #self.MyInit() self.df = pd.DataFrame(columns=["Symbol", "Name", "Sector"]) self.df.Symbol = self.myList self.df.Name = "" self.df.Sector = "" self.df = self.df.set_index("Symbol") self.df = self.df.sort_index() pass def Update(self, algorithm, data): # Return no insights if it's not time to rebalance if (self.algo.Time - self.lastTradeTime) < self.tradeFrequency: return [] #self.algo.Debug("Begin of Update()") self.lastTradeTime = self.algo.Time #self.MyInit() df = self.ComputeSignal() if len(df.index) <= 40: numberOfEquitiesToTrade = int(0.5*len(df.index) ) equitiesToTrade = [x for x in df.index[0:numberOfEquitiesToTrade] ] else: equitiesToTrade = [x for x in df.index[0:20] ] #self.algo.Debug("New equities to acquire:") self.algo.Debug(equitiesToTrade) #equitiesToTrade = ["IBM", "CSCO", "SPY"] #for symbol in equitiesToTrade: # self.algo.AddEquity(symbol) equitiesCarriedFromPriorTrade = ["equitiesCarriedFromPriorTrade: "] insights = [] #Close old positions if they aren't in equitiesToTrade for security in self.algo.Portfolio.Values: if security.Invested and security.Symbol in equitiesToTrade: equitiesCarriedFromPriorTrade.append(str(security.Symbol)) if security.Invested and security.Symbol not in equitiesToTrade: insights.append(Insight(security.Symbol, self.algo.insightPeriod, InsightType.Price, InsightDirection.Flat, None, None, None, None)) for symbol in equitiesToTrade: insights.append(Insight(symbol, self.algo.insightPeriod, InsightType.Price, InsightDirection.Up, None, 1, None, 1 )) self.algo.Debug(equitiesCarriedFromPriorTrade) #self.algo.Debug("End of Update()") return insights pass def OnSecuritiesChanged(self, algorithm, changes): pass def ComputeSignal(self): #set parameters for the Alpha, set end date and duration of analysis (replace months=1) #end_date= date.today() #start_date = datetime.datetime(2022, 4, 1) # Set Start Date #self.algo.Debug("Begin of ComputeSignal()") #self.MyInit() #df = self.df end_date = self.algo.Time #datetime.datetime(2022, 4, 11) # Set Start Date start_date = end_date - timedelta(days=14) #return None #self.algo.Debug(pd.show_versions()) #this does not work in pandas running on QuantConnect #pd.show_versions() #end_date = datetime.datetime.now() #datetime(2022, 4, 3) #start_date = end_date - timedelta(days=14) self.algo.Debug(f"ComputeSignal Start date {start_date} End date {end_date}") #return None histData = self.algo.History(self.myList, start_date, end_date, Resolution.Daily) #time.sleep(120) #self.algo.Debug(f"Point 2 {histData.shape}") histData = histData["close"].unstack(level = 0) #this block of code renames QuantConnect security identifiers to familiar stock symbols #self.algo.Debug(f"Point 2A Histdata shape: {histData.shape}") newCols = [] for x in histData.columns: newCols.append(str(self.algo.Symbol(x))) histData.columns = newCols #self.algo.Debug(f"Point 2B {histData.shape}") #histData = self.algo.History(self.algo.Securities.Keys, start_date, end_date, Resolution.Daily).close.unstack(level = 0) histRelChg = histData.pct_change()[1:] * 100 #self.algo.Debug(f"Point 3 {histData.shape}") histRelChg = histRelChg.dropna() #self.algo.Debug(f"Point 4 {histData.shape}") histRelChg.columns = newCols print(histRelChg.SPY) #histRelChg benchmark = "SPY" self.algo.AddEquity(benchmark) histSPYData = self.algo.History([benchmark], start_date, end_date, Resolution.Daily)["close"].unstack(level = 0) histSPYRelChg = histSPYData.pct_change()[1:] * 100 histSPYRelChg = histSPYRelChg.dropna() newSPYCols = [benchmark] histSPYData.columns = [benchmark] histSPYRelChg.columns = [benchmark] bpm = histSPYRelChg [histSPYRelChg.SPY >= 0.0] bnm = histSPYRelChg [histSPYRelChg.SPY < 0.0] benchmarkPosMomentum = bpm.mean() benchmarkNegMomentum = bnm.mean() self.algo.Debug(f"benchmarkPosMomentum: {round(float(benchmarkPosMomentum),2)} benchmarkNegMomentum: {round(float(benchmarkNegMomentum),2)}") dfp = histRelChg[histSPYRelChg["SPY"] >= 0] dfn = histRelChg[histSPYRelChg["SPY"] < 0] dfpmean = dfp.describe() dfpmean = dfpmean.transpose() dfnmean = dfn.describe() dfnmean = dfnmean.transpose() #self.algo.Debug("dfpmean shape") #self.algo.Debug(dfpmean.shape) #self.algo.Debug("dfnmean shape") #self.algo.Debug(dfnmean.shape) #df = self.df.copy(deep=True) #self.algo.Debug("df shape") #self.algo.Debug(df.shape) df = self.df df["PosMomentum"] = dfpmean["mean"] df["NegMomentum"] = dfnmean["mean"] df["PosMomentum"] = df["PosMomentum"].divide(float(benchmarkPosMomentum)) df["NegMomentum"] = df["NegMomentum"].divide(float(benchmarkNegMomentum)) df["CygnetMomentum"] = df["PosMomentum"] - df["NegMomentum"] #df.reset_index(drop=False, inplace=True) df = df.sort_values("CygnetMomentum", ascending=False) #self.algo.Debug("End of ComputeSignal()") return df ''' how dfx.head() looks like Name Sector PosMomentum NegMomentum CygnetMomentum Symbol NLSN Nielsen Holdings Industrials 3.387716 -0.562380 3.950096 TSLA Tesla Consumer Discretionary 3.419067 0.432448 2.986619 IRM Iron Mountain Real Estate 1.605596 -0.836687 2.442283 ALB Albemarle Corporation Materials 2.214053 -0.195778 2.409831 DXCM DexCom Health Care 3.483101 1.166991 2.316111 AAL American Airlines Group Industrials 2.672028 0.467772 2.204256 UAL United Airlines Industrials 2.167603 0.023625 2.143978 CTRA Coterra Energy -0.114747 -2.240039 2.125292 VLO Valero Energy Energy 0.045044 -2.046242 2.091286 NCLH Norwegian Cruise Line Holdings Consumer Discretionary 1.862464 -0.214142 2.076606 NEM Newmont Materials 0.628931 -1.435697 2.064628 RCL Royal Caribbean Group Consumer Discretionary 1.591941 -0.469435 2.061376 LW Lamb Weston Consumer Staples 2.396768 0.343169 2.053599 AES AES Corp Utilities 2.120699 0.072254 2.048444 ENPH Enphase Energy Information Technology 1.936349 -0.082361 2.018710 GIS General Mills Consumer Staples 1.245742 -0.744064 1.989806 EIX Edison International Utilities 1.248746 -0.738932 1.987678 PAYX Paychex Information Technology 1.477180 -0.394500 1.871680 EXC Exelon Utilities 1.356745 -0.440739 1.797484 ABMD Abiomed Health Care 2.013165 0.234625 1.778541 '''
import pandas as pd import datetime from datetime import datetime from AlgorithmImports import * from dateutil.relativedelta import relativedelta from io import StringIO from scipy import stats from statistics import mean def get_historical_close(symbol: str, timedelta: dict, hist: pd.DataFrame, end_date): ''' Accepts a symbol, a time delta to look in the past like {months: 6} or {years: 1} and the history dataframe. Returns the closing price of the symbol on or immediately after the time delta. Assumes that the history dataframe is indexed on symbol then time ascending. ''' single_symbol_data = hist[hist.index.get_level_values("symbol") == symbol] return single_symbol_data[single_symbol_data.index.get_level_values("time") >= end_date - relativedelta(**timedelta)].iloc[0].close def reorder_columns(dataframe, col_name, position): """Reorder a dataframe's column. Args: dataframe (pd.DataFrame): dataframe to use col_name (string): column name to move position (0-indexed position): where to relocate column to Returns: pd.DataFrame: re-assigned dataframe """ temp_col = dataframe[col_name] dataframe = dataframe.drop(columns=[col_name]) dataframe.insert(loc=position, column=col_name, value=temp_col) return dataframe def calculate_hqm_score(row): momentum_percentiles = [] # calculate percentiles of period returns time_periods = ['6m', '3m', '1m'] # ['1y', '6m', '3m', '1m'] for time_period in time_periods: momentum_percentiles.append(row[f'return_{time_period}_percentile']) return mean (momentum_percentiles) class CygnetCM3HQMAlpha(AlphaModel): def __init__(self, algorithm, securities): #algorithm.Debug("Begin of CygnetHQMAlpha.__init__()") self.algo = algorithm self.myList = securities self.lastTradeTime = self.algo.Time - timedelta(days=31) self.tradeFrequency = timedelta(days=30) self.period = timedelta(days=31) self.df = pd.DataFrame(columns=["Symbol", "Name", "Sector"]) self.df.Symbol = self.myList self.df.Name = "" self.df.Sector = "" self.df = self.df.set_index("Symbol") self.df = self.df.sort_index() pass def Update(self, algorithm, data): # Return no insights if it's not time to rebalance if (self.algo.Time - self.lastTradeTime) < self.tradeFrequency: return [] #self.algo.Debug("Begin of Update()") self.lastTradeTime = self.algo.Time df = self.ComputeSignal() if len(df.index) <= 10: #numberOfEquitiesToTrade = len(df(index)) equitiesToTrade = [x for x in df.index] else: equitiesToTrade = [x for x in df.index[0:10] ] #self.algo.Debug("New equities to acquire:") self.algo.Debug(equitiesToTrade) #equitiesToTrade = ["IBM", "CSCO", "SPY"] #for symbol in equitiesToTrade: # self.algo.AddEquity(symbol) equitiesCarriedFromPriorTrade = ["equitiesCarriedFromPriorTrade: "] insights = [] #Close old positions if they aren't in equitiesToTrade for security in self.algo.Portfolio.Values: if security.Invested and security.Symbol in equitiesToTrade: equitiesCarriedFromPriorTrade.append(str(security.Symbol)) if security.Invested and security.Symbol not in equitiesToTrade: insights.append(Insight(security.Symbol, self.algo.insightPeriod, InsightType.Price, InsightDirection.Flat, None, None, None, None)) for symbol in equitiesToTrade: insights.append(Insight(symbol, self.algo.insightPeriod, InsightType.Price, InsightDirection.Up, None, 1, None, 1 )) self.algo.Debug(equitiesCarriedFromPriorTrade) #self.algo.Debug("End of Update()") return insights pass def OnSecuritiesChanged(self, algorithm, changes): pass def ComputeSignal(self): #self.algo.Debug("Begin of ComputeSignal()") end_date = self.algo.Time #datetime.datetime(2022, 4, 11) # Set Start Date start_date = end_date - timedelta(days=190) self.algo.Debug(f"ComputeSignal Start date {start_date} End date {end_date}") #return None histData = self.algo.History(self.myList, start_date, end_date, Resolution.Daily) #["close"].unstack(level = 0) #self.algo.Debug(f"Point 2A Histdata shape: {histData.shape}") #this block of code renames QuantConnect security identifiers to familiar stock symbols ''' newCols = [] for x in histData.columns: newCols.append(str(self.algo.Symbol(x))) histData.columns = newCols #self.algo.Debug(f"Point 2B {histData.shape}") ''' # sets up the table we will use to track the HQM scores by symbol (expensive) # in trading this can be done using consolidation, but consolidation is not supported in QuantBook momentum = pd.Series(histData.index.unique(level=0)).to_frame() momentum["EquitySymbol"] = "Unknown" momentum["EquitySymbol"] = momentum["symbol"].apply (lambda x: str(self.algo.Symbol(x))) #this block of code, occassionally (eg, 2019 November / December tiemframe) throws SingleIndex out of position error; it is replaced with the code above #momentum["close_1y"] = momentum.symbol.apply(lambda x: get_historical_close(x, {"years": 1}, histData, end_date)) momentum["close_6m"] = momentum.symbol.apply(lambda x: get_historical_close(x, {"months": 6}, histData, end_date)) momentum["close_3m"] = momentum.symbol.apply(lambda x: get_historical_close(x, {"months": 3}, histData, end_date)) momentum["close_1m"] = momentum.symbol.apply(lambda x: get_historical_close(x, {"months": 1}, histData, end_date)) momentum["close_today"] = momentum.symbol.apply(lambda x: histData[histData.index.get_level_values("symbol") == x].iloc[-1].close) # in QuantConnect, if this test passes we don't need this research pipeline to be robust to null values assert len(momentum[momentum.isna().any(axis=1)]) == 0 # calculate percentiles of period returns time_periods = ['6m', '3m', '1m'] for time_period in time_periods: momentum[f'return_{time_period}'] = (momentum.close_today - momentum[f'close_{time_period}']) / momentum[f'close_{time_period}'] momentum[f'return_{time_period}_percentile'] = momentum[f'return_{time_period}'].apply (lambda x: stats.percentileofscore(momentum[f'return_{time_period}'], x)) momentum["HQM Score"] = momentum.apply (calculate_hqm_score, axis = 1) #momentum["EquitySymbol"] = "" momentum = reorder_columns(momentum, "EquitySymbol", 0) momentum = reorder_columns(momentum, "HQM Score", 1) #for i in range(len(momentum)): # momentum["EquitySymbol"][i] = str(qb.Symbol(momentum["symbol"][i])) momentum = momentum.set_index("EquitySymbol").sort_values(by="HQM Score", ascending = False) self.algo.Debug(momentum.shape) return momentum
import pandas as pd import datetime from datetime import datetime from AlgorithmImports import * from dateutil.relativedelta import relativedelta from io import StringIO from scipy import stats from statistics import mean ''' version notes v1 (original) v2 - several code improvements v3 - Replcing insights with straight buy orders ''' def get_historical_close(symbol: str, timedelta: dict, hist: pd.DataFrame, end_date): ''' Accepts a symbol, a time delta to look in the past like {months: 6} or {years: 1} and the history dataframe. Returns the closing price of the symbol on or immediately after the time delta. Assumes that the history dataframe is indexed on symbol then time ascending. ''' single_symbol_data = hist[hist.index.get_level_values("symbol") == symbol] return single_symbol_data[single_symbol_data.index.get_level_values("time") >= end_date - relativedelta(**timedelta)].iloc[0].close def reorder_columns(dataframe, col_name, position): """Reorder a dataframe's column. Args: dataframe (pd.DataFrame): dataframe to use col_name (string): column name to move position (0-indexed position): where to relocate column to Returns: pd.DataFrame: re-assigned dataframe """ temp_col = dataframe[col_name] dataframe = dataframe.drop(columns=[col_name]) dataframe.insert(loc=position, column=col_name, value=temp_col) return dataframe def calculate_hqm_score(df): momentum_percentiles = [] # calculate percentiles of period returns time_periods = ['6m', '3m', '1m'] # ['1y', '6m', '3m', '1m'] for time_period in time_periods: momentum_percentiles.append(df[f'return_{time_period}_percentile']) return sum(momentum_percentiles) #mean(momentum_percentiles) class CygnetCM3HQMAlpha2(AlphaModel): def __init__(self, algorithm, securities): #algorithm.Debug("Begin of CygnetHQMAlpha.__init__()") self.algo = algorithm self.myList = securities self.lastTradeTime = self.algo.Time - timedelta(days=31) self.tradeFrequency = timedelta(days=30) self.period = timedelta(days=31) self.longs = [] self.myStocksList = [] self.df = pd.DataFrame(columns=["Symbol", "Name", "Sector"]) self.df.Symbol = self.myList self.df.Name = "" self.df.Sector = "" self.df = self.df.set_index("Symbol") self.df = self.df.sort_index() pass def Update(self, algorithm, data): # Return no insights if it's not time to rebalance if (self.algo.Time - self.lastTradeTime) < self.tradeFrequency: return [] #self.algo.Debug("Begin of Update()") self.lastTradeTime = self.algo.Time df = self.ComputeSignal() maxNumOfHoldings = 12 startingRank = 5 maxNumOfHoldings = min(len(df.index), maxNumOfHoldings) equitiesToTrade = [x for x in df.index[startingRank:maxNumOfHoldings] ] #self.algo.Debug("New equities to acquire:") self.algo.Debug(equitiesToTrade) #equitiesToTrade = ["IBM", "CSCO", "SPY"] #for symbol in equitiesToTrade: # self.algo.AddEquity(symbol) insights = [] ''' #Close old positions if they aren't in equitiesToTrade for security in self.algo.Portfolio.Values: if security.Invested and security.Symbol in equitiesToTrade: equitiesCarriedFromPriorTrade.append(str(security.Symbol)) if security.Invested and security.Symbol not in equitiesToTrade: insights.append(Insight(security.Symbol, self.algo.insightPeriod, InsightType.Price, InsightDirection.Flat, None, None, None, None)) for symbol in equitiesToTrade: if self.algo.tradeDirection == 1: insights.append(Insight(symbol, self.algo.insightPeriod, InsightType.Price, InsightDirection.Up, None, 1, None, 1 )) if self.algo.tradeDirection == -1: insights.append(Insight(symbol, self.algo.insightPeriod, InsightType.Price, InsightDirection.Down, None, 1, None, 1 )) else: insights.append(Insight(symbol, self.algo.insightPeriod, InsightType.Price, InsightDirection.Flat, None, 1, None, 1 )) self.algo.Debug(equitiesCarriedFromPriorTrade) #self.algo.Debug("End of Update()") return insights pass ''' #VR 4/1/23 # Close old positions if they aren't in equitiesToTrade list for security in algorithm.Portfolio.Values: if security.Invested and security.Symbol not in equitiesToTrade: insights.append(Insight(security.Symbol, self.algo.insightPeriod, InsightType.Price, InsightDirection.Flat, None, None, None, None)) sumOfClosingPrices = df["close_today"][startingRank:maxNumOfHoldings].sum() # calc sum of prices to figure out how many shares to buy numOfSharesToBuy = math.floor(algorithm.Portfolio.TotalPortfolioValue / sumOfClosingPrices) for sym in equitiesToTrade: if not security.Invested: # if it is already in portfolio, do not buy again self.algo.MarketOrder(sym, numOfSharesToBuy) return insights def OnSecuritiesChanged(self, algorithm, changes): pass def ComputeSignal(self): #self.algo.Debug("Begin of ComputeSignal()") end_date = self.algo.Time #datetime.datetime(2022, 4, 11) # Set Start Date start_date = end_date - timedelta(days=190) self.algo.Debug(f"ComputeSignal Start date {start_date} End date {end_date}") #return None histData = self.algo.History(self.myList, start_date, end_date, Resolution.Daily)["close"].unstack(level = 0) #this block of code renames QuantConnect security identifiers to familiar stock symbols newCols = [] for x in histData.columns: newCols.append(str(self.algo.Symbol(x))) histData.columns = newCols #self.algo.Debug(f"Point 2B {histData.shape}") histData = histData.transpose() #self.algo.Debug(f"Point 2A Histdata shape: {histData.shape}") momentum = pd.DataFrame(index=histData.index, columns=["close_today", "close_1m", "close_3m", "close_6m"]) momentum = momentum.fillna(0.0) #momentum["EquitySymbol"] = "Unknown" #momentum["EquitySymbol"] = momentum["symbol"].apply (lambda x: str(self.algo.Symbol(x))) for i in range(len(momentum)): momentum.iloc[i, 0] = histData.iloc[i, -1] momentum.iloc[i, 1] = histData.iloc[i, -21] momentum.iloc[i, 2] = histData.iloc[i, -63] momentum.iloc[i, 3] = histData.iloc[i, -126] # calculate percentiles of period returns time_periods = ['6m', '3m', '1m'] numOfBins = 100 for time_period in time_periods: momentum[f'return_{time_period}'] = (momentum.close_today - momentum[f'close_{time_period}']) / momentum[f'close_{time_period}'] #momentum[f'return_{time_period}_percentile'] = momentum[f'return_{time_period}'].apply (lambda x: stats.percentileofscore(momentum[f'return_{time_period}'], x)) momentum[f'return_{time_period}_percentile'] = pd.qcut(momentum[f'return_{time_period}'], numOfBins, labels = False) # divvy up into bins momentum["HQM Score"] = momentum.apply (calculate_hqm_score, axis = 1) #for i in range(len(momentum)): # momentum["EquitySymbol"][i] = str(qb.Symbol(momentum["symbol"][i])) #momentum = momentum.set_index("EquitySymbol") momentum = momentum.sort_values(by="HQM Score", ascending = False) momentum = reorder_columns(momentum, "HQM Score", 0) self.algo.Debug(momentum.shape) return momentum
import pandas as pd import datetime from datetime import datetime from AlgorithmImports import * from dateutil.relativedelta import relativedelta from io import StringIO from scipy import stats from statistics import mean def get_historical_close(symbol: str, timedelta: dict, hist: pd.DataFrame, end_date): ''' Accepts a symbol, a time delta to look in the past like {months: 6} or {years: 1} and the history dataframe. Returns the closing price of the symbol on or immediately after the time delta. Assumes that the history dataframe is indexed on symbol then time ascending. ''' single_symbol_data = hist[hist.index.get_level_values("symbol") == symbol] return single_symbol_data[single_symbol_data.index.get_level_values("time") >= end_date - relativedelta(**timedelta)].iloc[0].close def reorder_columns(dataframe, col_name, position): """Reorder a dataframe's column. Args: dataframe (pd.DataFrame): dataframe to use col_name (string): column name to move position (0-indexed position): where to relocate column to Returns: pd.DataFrame: re-assigned dataframe """ temp_col = dataframe[col_name] dataframe = dataframe.drop(columns=[col_name]) dataframe.insert(loc=position, column=col_name, value=temp_col) return dataframe def calculate_hqm_score(row): momentum_percentiles = [] # calculate percentiles of period returns time_periods = ['3m', '1m'] # ['1y', '6m', '3m', '1m'] for time_period in time_periods: momentum_percentiles.append(row[f'return_{time_period}_percentile']) return mean (momentum_percentiles) class CygnetCM7Alpha(AlphaModel): def __init__(self, algorithm, securities): #algorithm.Debug("Begin of CygnetHQMAlpha.__init__()") self.algo = algorithm self.myList = securities self.lastTradeTime = self.algo.Time - timedelta(days=31) self.tradeFrequency = timedelta(days=30) self.period = timedelta(days=31) self.df = pd.DataFrame(columns=["Symbol", "Name", "Sector"]) self.df.Symbol = self.myList self.df.Name = "" self.df.Sector = "" self.df = self.df.set_index("Symbol") self.df = self.df.sort_index() pass def Update(self, algorithm, data): # Return no insights if it's not time to rebalance if (self.algo.Time - self.lastTradeTime) < self.tradeFrequency: return [] #self.algo.Debug("Begin of Update()") self.lastTradeTime = self.algo.Time df = self.ComputeSignal() if len(df.index) <= 40: numberOfEquitiesToTrade = int(0.5*len(df.index) ) equitiesToTrade = [x for x in df.index[0:numberOfEquitiesToTrade] ] else: equitiesToTrade = [x for x in df.index[0:20] ] #self.algo.Debug("New equities to acquire:") self.algo.Debug(equitiesToTrade) #equitiesToTrade = ["IBM", "CSCO", "SPY"] #for symbol in equitiesToTrade: # self.algo.AddEquity(symbol) equitiesCarriedFromPriorTrade = ["equitiesCarriedFromPriorTrade: "] insights = [] #Close old positions if they aren't in equitiesToTrade for security in self.algo.Portfolio.Values: if security.Invested and security.Symbol in equitiesToTrade: equitiesCarriedFromPriorTrade.append(str(security.Symbol)) if security.Invested and security.Symbol not in equitiesToTrade: insights.append(Insight(security.Symbol, self.algo.insightPeriod, InsightType.Price, InsightDirection.Flat, None, None, None, None)) for symbol in equitiesToTrade: insights.append(Insight(symbol, self.algo.insightPeriod, InsightType.Price, InsightDirection.Up, None, 1, None, 1 )) self.algo.Debug(equitiesCarriedFromPriorTrade) #self.algo.Debug("End of Update()") return insights pass def OnSecuritiesChanged(self, algorithm, changes): pass def ComputeSignal(self): #self.algo.Debug("Begin of ComputeSignal()") end_date = self.algo.Time #datetime.datetime(2022, 4, 11) # Set Start Date start_date = end_date - timedelta(days=190) self.algo.Debug(f"ComputeSignal Start date {start_date} End date {end_date}") #return None histData = self.algo.History(self.myList, start_date, end_date, Resolution.Daily)["close"].unstack(level = 0) #this block of code renames QuantConnect security identifiers to familiar stock symbols newCols = [] for x in histData.columns: newCols.append(str(self.algo.Symbol(x))) histData.columns = newCols #self.algo.Debug(f"Point 2B {histData.shape}") histData = histData.transpose() #self.algo.Debug(f"Point 2A Histdata shape: {histData.shape}") momentum = pd.DataFrame(index=histData.index, columns=["close_today", "close_1m", "close_3m", "close_6m"]) momentum = momentum.fillna(0.0) #momentum["EquitySymbol"] = "Unknown" #momentum["EquitySymbol"] = momentum["symbol"].apply (lambda x: str(self.algo.Symbol(x))) for i in range(len(momentum)): momentum.iloc[i, 0] = histData.iloc[i, -1] momentum.iloc[i, 1] = histData.iloc[i, -21] momentum.iloc[i, 2] = histData.iloc[i, -63] momentum.iloc[i, 3] = histData.iloc[i, -126] # calculate percentiles of period returns time_periods = ['3m', '1m'] for time_period in time_periods: momentum[f'return_{time_period}'] = (momentum.close_today - momentum[f'close_{time_period}']) / momentum[f'close_{time_period}'] momentum[f'return_{time_period}_percentile'] = momentum[f'return_{time_period}'].apply (lambda x: stats.percentileofscore(momentum[f'return_{time_period}'], x)) momentum["HQM Score"] = momentum.apply (calculate_hqm_score, axis = 1) #for i in range(len(momentum)): # momentum["EquitySymbol"][i] = str(qb.Symbol(momentum["symbol"][i])) #momentum = momentum.set_index("EquitySymbol") momentum = momentum.sort_values(by="HQM Score", ascending = False) momentum = reorder_columns(momentum, "HQM Score", 0) self.algo.Debug(momentum.shape) return momentum
import pandas as pd import datetime from datetime import datetime from AlgorithmImports import * from dateutil.relativedelta import relativedelta from io import StringIO from scipy import stats from statistics import mean def get_historical_close(symbol: str, timedelta: dict, hist: pd.DataFrame, end_date): ''' Accepts a symbol, a time delta to look in the past like {months: 6} or {years: 1} and the history dataframe. Returns the closing price of the symbol on or immediately after the time delta. Assumes that the history dataframe is indexed on symbol then time ascending. ''' single_symbol_data = hist[hist.index.get_level_values("symbol") == symbol] return single_symbol_data[single_symbol_data.index.get_level_values("time") >= end_date - relativedelta(**timedelta)].iloc[0].close def reorder_columns(dataframe, col_name, position): """Reorder a dataframe's column. Args: dataframe (pd.DataFrame): dataframe to use col_name (string): column name to move position (0-indexed position): where to relocate column to Returns: pd.DataFrame: re-assigned dataframe """ temp_col = dataframe[col_name] dataframe = dataframe.drop(columns=[col_name]) dataframe.insert(loc=position, column=col_name, value=temp_col) return dataframe def calculate_hqm_score(df): momentum_percentiles = [] # calculate percentiles of period returns time_periods = ['3m', '1m'] # ['1y', '6m', '3m', '1m'] for time_period in time_periods: momentum_percentiles.append(df[f'return_{time_period}_percentile']) return sum(momentum_percentiles) #mean(momentum_percentiles) class CygnetCM7Alpha2(AlphaModel): def __init__(self, algorithm, securities): #algorithm.Debug("Begin of CygnetHQMAlpha.__init__()") self.algo = algorithm self.myList = securities self.lastTradeTime = self.algo.Time - timedelta(days=31) self.tradeFrequency = timedelta(days=30) self.period = timedelta(days=31) self.df = pd.DataFrame(columns=["Symbol", "Name", "Sector"]) self.df.Symbol = self.myList self.df.Name = "" self.df.Sector = "" self.df = self.df.set_index("Symbol") self.df = self.df.sort_index() pass def Update(self, algorithm, data): # Return no insights if it's not time to rebalance if (self.algo.Time - self.lastTradeTime) < self.tradeFrequency: return [] #self.algo.Debug("Begin of Update()") self.lastTradeTime = self.algo.Time df = self.ComputeSignal() equitiesToTrade = [x for x in df.index[:20] ] # figure out how many shares to buy sumOfClosingPrices = df["close_today"][:20].sum() #self.algo.Debug("New equities to acquire:") self.algo.Debug(equitiesToTrade) insights = [] #VR 4/1/23 # Close old positions if they aren't in equitiesToTrade list for security in algorithm.Portfolio.Values: if security.Invested and security.Symbol not in equitiesToTrade: insights.append(Insight(security.Symbol, self.algo.insightPeriod, InsightType.Price, InsightDirection.Flat, None, None, None, None)) numOfSharesToBuy = math.floor(algorithm.Portfolio.TotalPortfolioValue / sumOfClosingPrices) for sym in equitiesToTrade: if not security.Invested: # if it is already in portfolio, do not buy again self.algo.MarketOrder(sym, numOfSharesToBuy) return insights def OnSecuritiesChanged(self, algorithm, changes): pass def ComputeSignal(self): #self.algo.Debug("Begin of ComputeSignal()") end_date = self.algo.Time #datetime.datetime(2022, 4, 11) # Set Start Date start_date = end_date - timedelta(days=190) self.algo.Debug(f"ComputeSignal Start date {start_date} End date {end_date}") #return None histData = self.algo.History(self.myList, start_date, end_date, Resolution.Daily)["close"].unstack(level = 0) #this block of code renames QuantConnect security identifiers to familiar stock symbols newCols = [] for x in histData.columns: newCols.append(str(self.algo.Symbol(x))) histData.columns = newCols #self.algo.Debug(f"Point 2B {histData.shape}") histData = histData.transpose() #self.algo.Debug(f"Point 2A Histdata shape: {histData.shape}") momentum = pd.DataFrame(index=histData.index, columns=["close_today", "close_1m", "close_3m", "close_6m"]) momentum = momentum.fillna(0.0) #momentum["EquitySymbol"] = "Unknown" #momentum["EquitySymbol"] = momentum["symbol"].apply (lambda x: str(self.algo.Symbol(x))) for i in range(len(momentum)): momentum.iloc[i, 0] = histData.iloc[i, -1] momentum.iloc[i, 1] = histData.iloc[i, -21] momentum.iloc[i, 2] = histData.iloc[i, -63] momentum.iloc[i, 3] = histData.iloc[i, -126] # calculate percentiles of period returns time_periods = ['3m', '1m'] numOfBins = 100 for time_period in time_periods: momentum[f'return_{time_period}'] = (momentum.close_today - momentum[f'close_{time_period}']) / momentum[f'close_{time_period}'] #momentum[f'return_{time_period}_percentile'] = momentum[f'return_{time_period}'].apply (lambda x: stats.percentileofscore(momentum[f'return_{time_period}'], x)) momentum[f'return_{time_period}_percentile'] = pd.qcut(momentum[f'return_{time_period}'], numOfBins, labels=False) # divvy up into bins momentum["HQM Score"] = momentum.apply (calculate_hqm_score, axis = 1) #for i in range(len(momentum)): # momentum["EquitySymbol"][i] = str(qb.Symbol(momentum["symbol"][i])) #momentum = momentum.set_index("EquitySymbol") momentum = momentum.sort_values(by="HQM Score", ascending = False) momentum = reorder_columns(momentum, "HQM Score", 0) self.algo.Debug(momentum.shape) return momentum
import pandas as pd import datetime as dt from AlgorithmImports import * from dateutil.relativedelta import relativedelta from io import StringIO from scipy import stats from statistics import mean def most_recent_business_day(date:datetime): #https://www.geeksforgeeks.org/python-get-most-recent-previous-business-day/Method 3 ts = pd.Timestamp(str(date)) offset = pd.tseries.offsets.BusinessDay(n=1) return pd.to_datetime(ts - offset) def get_historical_close(symbol: str, timedelta: dict, hist: pd.DataFrame, end_date): ''' Accepts a symbol, a time delta to look in the past like {months: 6} or {years: 1} and the history dataframe. Returns the closing price of the symbol on or immediately after the time delta. Assumes that the history dataframe is indexed on symbol then time ascending. ''' single_symbol_data = hist[hist.index.get_level_values("symbol") == symbol] return single_symbol_data[single_symbol_data.index.get_level_values("time") >= end_date - relativedelta(**timedelta)].iloc[0].close def calculate_rv_score(row): value_percentiles = [] for column in ["PERatio", "PBRatio", "PSRatio", "EVToEBITDA", "EVtoGrossProfit"]: value_percentiles.append(row[f"{column}_percentile"]) return mean(value_percentiles) class CygnetCV5Alpha(AlphaModel): def __init__(self, algorithm, securities): algorithm.Debug("Begin of CygnetCV5Alpha.__init__()") self.algo = algorithm self.myList = securities self.lastTradeTime = self.algo.Time - timedelta(days=31) self.tradeFrequency = timedelta(days=30) self.period = timedelta(days=31) algorithm.Debug("End of CygnetCV5Alpha.__init__()") pass def Update(self, algorithm, data): # Return no insights if it's not time to rebalance if (self.algo.Time - self.lastTradeTime) < self.tradeFrequency: return [] self.algo.Debug("Begin of Update()") self.lastTradeTime = self.algo.Time df = self.ComputeSignal() equitiesToTrade = [x for x in df.index[0:20] ] #self.algo.Debug("New equities to acquire:") self.algo.Debug(equitiesToTrade) #equitiesToTrade = ["IBM", "CSCO", "SPY"] #for symbol in equitiesToTrade: # self.algo.AddEquity(symbol) equitiesCarried = ["Equities carried: "] equitiesExited = ["Equities to be exited: "] equitiesNew = ["New equities to be traded: "] insights = [] #Close old positions if they aren't in equitiesToTrade for security in self.algo.Portfolio.Values: if security.Invested and security.Symbol.Value in equitiesToTrade: equitiesCarried.append(security.Symbol.Value) if security.Invested and security.Symbol.Value not in equitiesToTrade: equitiesExited.append(security.Symbol.Value) insights.append(Insight(security.Symbol, self.algo.insightPeriod, InsightType.Price, InsightDirection.Flat, None, None, None, None)) if not security.Invested and security.Symbol.Value in equitiesToTrade: equitiesNew.append(security.Symbol.Value) insights.append(Insight(security.Symbol, self.algo.insightPeriod, InsightType.Price, InsightDirection.Up, None, 1, None, 1 )) self.algo.Debug(equitiesCarried) self.algo.Debug(equitiesExited) self.algo.Debug(equitiesNew) self.algo.Debug("End of Update()") return insights pass def OnSecuritiesChanged(self, algorithm, universeChanges): self.algo.Debug("Begin of OnSecuritiesChanged()") ''' addedSecurities = [x.Symbol.Value for x in universeChanges.AddedSecurities] self.algo.Log(addedSecurities) if (self.algo.Time - self.lastTradeTime) < self.tradeFrequency: return [] self.lastTradeTime = self.algo.Time df = self.ComputeSignal() ''' pass def ComputeSignal(self): self.algo.Debug("Begin of ComputeSignal()") end_date = self.algo.Time #datetime.datetime(2022, 4, 11) # Set Start Date start_date = end_date - timedelta(days=365) self.algo.Debug(f"In ComputeSignal() algo.Time Start date {self.algo.Time}") #start and end date do not participate valueMetrics = self.algo.fundamentalData.copy(deep=True) self.algo.Debug(valueMetrics.shape) valueMetrics.fillna(0, inplace=True) # compute the last ratios valueMetrics ["EVtoGrossProfit"] = valueMetrics["EnterpriseValue"] / valueMetrics ["GrossProfit"] valueMetrics ["InvertedDivYield5Year"] = 1.0 - valueMetrics ["DivYield5Year"] # cleanup the dataframe for metric calculation. #valueMetrics = data.drop(['EnterpriseValue', 'GrossProfit', 'DivYield5Year'], axis = 1) #valueMetrics = data percentile_columns = ["PERatio", "PBRatio", "PSRatio", "EVToEBITDA", "EVtoGrossProfit", "InvertedDivYield5Year"] # all these are ratios such that lower they are, the more undervalued the stock is for header in percentile_columns: valueMetrics[f"{header}_percentile"] = valueMetrics[header].apply (lambda x: stats.percentileofscore(valueMetrics[header], x)) valueMetrics["rv_score"] = valueMetrics.apply(calculate_rv_score, axis = 1) #This line of code does the same as the code block below '''valueMetrics["rv_score"] = 0.0 countOfCols = len(percentile_columns) for sym in valueMetrics.index: s = 0.0 for header in percentile_columns: s += valueMetrics.loc[sym, f"{header}_percentile"] valueMetrics.loc[sym, "rv_score"] = s / countOfCols''' valueMetrics.sort_values("rv_score", ascending = True, inplace=True) return valueMetrics
#region imports from AlgorithmImports import * #endregion from System.Collections.Generic import List from QuantConnect.Data.UniverseSelection import * import operator from math import ceil, floor from scipy import stats import numpy as np from datetime import timedelta class CygnetCV8PiotroskiFscoreAlpha(QCAlgorithm): def __init__(self, algorithm, securities): algorithm.Debug("Begin of PiotroskiFscoreAlpha.__init__()") self.algo = algorithm self.myList = securities self.lastTradeTime = self.algo.Time - timedelta(days=30) self.lastTradeTime2 = self.algo.Time - timedelta(days=30) self.tradeFrequency = timedelta(days=30) self.period = timedelta(days=31) self.myCurrentSecurities = [] self.myNewSecurities = [] self.lastMonth1 = -1 self.lastMonth2 = -1 #algorithm.Debug("End of PiotroskiFscoreAlpha.__init__()") pass def Update(self, algorithm, data): # Return no insights if it's not time to rebalance if (self.lastMonth1 == self.algo.Time.month): return [] self.lastMonth1 = self.algo.Time.month self.algo.Debug("Begin of Update()") #df = self.ComputeSignal() equitiesToTrade = [] equitiesToTrade = [x.Value for x in self.myNewSecurities] self.algo.Debug(equitiesToTrade) #equitiesToTrade = ["IBM", "CSCO", "SPY"] #for symbol in equitiesToTrade: # self.algo.AddEquity(symbol) equitiesCarried = ["Equities carried: "] equitiesExited = ["Equities to be exited: "] equitiesNew = ["New equities to be traded: "] insights = [] #Close old positions if they aren't in equitiesToTrade for security in self.algo.Portfolio.Values: if security.Invested and security.Symbol.Value in equitiesToTrade: equitiesCarried.append(security.Symbol.Value) if security.Invested and security.Symbol.Value not in equitiesToTrade: equitiesExited.append(security.Symbol.Value) insights.append(Insight(security.Symbol, self.algo.insightPeriod, InsightType.Price, InsightDirection.Flat, None, None, None, None)) if not security.Invested and security.Symbol.Value in equitiesToTrade: equitiesNew.append(security.Symbol.Value) insights.append(Insight(security.Symbol, self.algo.insightPeriod, InsightType.Price, InsightDirection.Up, None, 1, None, 1 )) self.algo.Debug(equitiesCarried) self.algo.Debug(equitiesExited) self.algo.Debug(equitiesNew) self.myCurrentSecurities = self.myNewSecurities.copy() self.algo.Debug("End of Update()") return insights pass def OnSecuritiesChanged(self, algorithm, universeChanges): if (self.lastMonth2 == self.algo.Time.month): return [] self.lastMonth2 = self.algo.Time.month self.lastTradeTime2 = self.algo.Time self.algo.Debug("Begin of OnSecuritiesChanged()") for x in universeChanges.AddedSecurities: self.algo.Debug(f"Adding {len(universeChanges.AddedSecurities)}") if x.Symbol not in self.myNewSecurities: self.myNewSecurities.append(x.Symbol) z = len(universeChanges.RemovedSecurities) for x in universeChanges.RemovedSecurities: self.algo.Debug(f"Removing {len(universeChanges.RemovedSecurities)}") sym = x.Symbol.Value if x.Symbol in self.myNewSecurities: self.myNewSecurities.remove(x.Symbol) self.algo.Debug(f"No of securities in {len(self.myNewSecurities)}") #df = self.ComputeSignal() pass def ComputeSignal(self): self.algo.Debug("Begin of ComputeSignal()") end_date = self.algo.Time #datetime.datetime(2022, 4, 11) # Set Start Date start_date = end_date - timedelta(days=365) self.algo.Debug(f"In ComputeSignal() algo.Time Start date {self.algo.Time}") #start and end date do not participate # return a dataframe with symbols in the index column return valueMetrics class PiotroskiFScore(object): def __init__(self, netincome, operating_cashflow, roa_current, roa_past, issued_current, issued_past, grossm_current, grossm_past, longterm_current, longterm_past, curratio_current, curratio_past, assetturn_current, assetturn_past): self.netincome = netincome self.operating_cashflow = operating_cashflow self.roa_current = roa_current self.roa_past = roa_past self.issued_current = issued_current self.issued_past = issued_past self.grossm_current = grossm_current self.grossm_past = grossm_past self.longterm_current = longterm_current self.longterm_past = longterm_past self.curratio_current = curratio_current self.curratio_past = curratio_past self.assetturn_current = assetturn_current self.assetturn_past = assetturn_past def ObjectiveScore(self): fscore = 0 fscore += np.where(self.netincome > 0, 1, 0) fscore += np.where(self.operating_cashflow > 0, 1, 0) fscore += np.where(self.roa_current > self.roa_past, 1, 0) fscore += np.where(self.operating_cashflow > self.roa_current, 1, 0) fscore += np.where(self.longterm_current <= self.longterm_past, 1, 0) fscore += np.where(self.curratio_current >= self.curratio_past, 1, 0) fscore += np.where(self.issued_current <= self.issued_past, 1, 0) fscore += np.where(self.grossm_current >= self.grossm_past, 1, 0) fscore += np.where(self.assetturn_current >= self.assetturn_past, 1, 0) return fscore
#region imports from AlgorithmImports import * #endregion from datetime import timedelta #FundamentalFactorsAlpha class CygnetCVM4Alpha(AlphaModel): def __init__(self, algorithm, securities): # Initialize the various variables/helpers we'll need #algorithm.Debug("Begin of CygnetCV5Alpha.__init__()") self.algo = algorithm self.myList = securities #not used at all self.lastTradeTime = self.algo.Time - timedelta(days=31) self.tradeFrequency = timedelta(days=30) self.period = timedelta(days=31) self.lastMonth = -1 self.longs = [] self.num_fine = 20 # normalize quality, value, size weights quality_weight, value_weight, size_weight = 1, 1, 2 weights = [quality_weight, value_weight, size_weight] weights = [float(i)/sum(weights) for i in weights] self.quality_weight = weights[0] self.value_weight = weights[1] self.size_weight = weights[2] #self.MyInit() #algorithm.Debug("End of CygnetCV5Alpha.__init__()") pass def Update(self, algorithm, data): '''Updates this alpha model with the latest data from the algorithm. This is called each time the algorithm receives data for subscribed securities Args: algorithm: The algorithm instance data: The newa available Returns: New insights''' # Return no insights if it's not time to rebalance if algorithm.Time.month == self.lastMonth: return [] self.lastMonth = algorithm.Time.month # List of insights # Insights of the form: Insight(symbol, timedelta, type, direction, magnitude, confidence, sourceModel, weight) insights = [] # Close old positions if they aren't in longs for security in algorithm.Portfolio.Values: if security.Invested and security.Symbol not in self.longs: insights.append(Insight(security.Symbol, self.algo.insightPeriod, InsightType.Price, InsightDirection.Flat, None, None, None, None)) length = len(self.longs) for i in range(length): insights.append(Insight(self.longs[i], self.algo.insightPeriod, InsightType.Price, InsightDirection.Up, None, (length - i)**2, None, (length - i)**2 )) return insights def OnSecuritiesChanged(self, algorithm, changes): '''Event fired each time the we add/remove securities from the data feed Args: algorithm: The algorithm instance that experienced the change in securities changes: The security additions and removals from the algorithm''' # Get the added securities added = [x for x in changes.AddedSecurities] # Assign quality, value, size score to each stock quality_scores = self.Scores(added, [(lambda x: x.Fundamentals.OperationRatios.GrossMargin.Value, True, 1), (lambda x: x.Fundamentals.OperationRatios.QuickRatio.Value, True, 2), (lambda x: x.Fundamentals.OperationRatios.DebttoAssets.Value, False, 1)]) value_scores = self.Scores(added, [(lambda x: x.Fundamentals.ValuationRatios.BookValuePerShare, True, 0.25), (lambda x: x.Fundamentals.ValuationRatios.CashReturn, True, 0.5), (lambda x: x.Fundamentals.ValuationRatios.EarningYield, True, 0.5)]) size_scores = self.Scores(added, [(lambda x: x.Fundamentals.MarketCap, False, 1)]) scores = {} # Assign a combined score to each stock for symbol,value in quality_scores.items(): quality_rank = value value_rank = value_scores[symbol] size_rank = size_scores[symbol] scores[symbol] = quality_rank*self.quality_weight + value_rank*self.value_weight + size_rank*self.size_weight # VR 5/5/21: what is the right way, multiply or divide # Sort the securities by their scores sorted_stock = sorted(scores.items(), key=lambda tup : tup[1], reverse=False) # VR 5/5/21: was reverse=False Are higher scores better or worse? Lower the score the better sorted_symbol = [tup[0] for tup in sorted_stock][:self.num_fine] # Sort the top stocks into the long_list self.longs = [security.Symbol for security in sorted_symbol] # Log longs symbols and their score algorithm.Log(", ".join([str(x.Symbol.Value) + ": " + str(round(scores[x],2)) for x in sorted_symbol])) def Scores(self, added, fundamentals): '''Assigns scores to each stock in added Args: added: list of sceurities fundamentals: list of 3-tuples (lambda function, bool, float) Returns: Dictionary with score for each security''' length = len(fundamentals) if length == 0: return {} # Initialize helper variables scores = {} sortedBy = [] rank = [0 for _ in fundamentals] # Normalize weights weights = [tup[2] for tup in fundamentals] weights = [float(i)/sum(weights) for i in weights] # Create sorted list for each fundamental factor passed for tup in fundamentals: sortedBy.append(sorted(added, key=tup[0], reverse=tup[1])) # Create and save score for each symbol for index, symbol in enumerate(sortedBy[0]): # Save symbol's rank for each fundamental factor rank[0] = index for j in range(1, length): rank[j] = sortedBy[j].index(symbol) # Save symbol's total score score = 0 for i in range(length): score += rank[i] * weights[i] scores[symbol] = score return scores
#region imports from AlgorithmImports import * #endregion from datetime import timedelta #FundamentalFactorsAlpha ''' v2 Improvements: Coarse selection will pick most liquid and have good fundamentals ''' class CygnetCVM4AlphaV2(AlphaModel): def __init__(self, algorithm, securities): # Initialize the various variables/helpers we'll need #algorithm.Debug("Begin of CygnetCV5Alpha.__init__()") self.algo = algorithm self.myList = securities #not used at all self.lastTradeTime = self.algo.Time - timedelta(days=31) self.tradeFrequency = timedelta(days=30) self.period = timedelta(days=31) self.lastMonth = -1 self.longs = [] self.num_fine = self.algo.num_fine # normalize quality, value, size weights quality_weight, value_weight, size_weight = 1, 1, 2 weights = [quality_weight, value_weight, size_weight] weights = [float(i) / sum(weights) for i in weights] self.quality_weight = weights[0] self.value_weight = weights[1] self.size_weight = weights[2] self.myStocksList = [] #self.MyInit() #algorithm.Debug("End of CygnetCV5Alpha.__init__()") pass def Update(self, algorithm, data): '''Updates this alpha model with the latest data from the algorithm. This is called each time the algorithm receives data for subscribed securities Args: algorithm: The algorithm instance data: The newa available Returns: New insights''' # Return no insights if it's not time to rebalance if algorithm.Time.month == self.lastMonth: return [] self.lastMonth = algorithm.Time.month # List of insights # Insights of the form: Insight(symbol, timedelta, type, direction, magnitude, confidence, sourceModel, weight) insights = [] # Close old positions if they aren't in longs for security in algorithm.Portfolio.Values: if security.Invested and security.Symbol not in self.longs: insights.append(Insight(security.Symbol, self.algo.insightPeriod, InsightType.Price, InsightDirection.Flat, None, None, None, None)) length = len(self.longs) for i in range(length): insights.append(Insight(self.longs[i], self.algo.insightPeriod, InsightType.Price, InsightDirection.Up, None, (length - i)**2, None, (length - i)**2 )) return insights def OnSecuritiesChanged(self, algorithm, changes): '''Event fired each time the we add/remove securities from the data feed Args: algorithm: The algorithm instance that experienced the change in securities changes: The security additions and removals from the algorithm''' # Get the added securities securities = [x for x in changes.AddedSecurities] # Assign quality, value, size score to each stock quality_scores = self.Scores(securities, [(lambda x: x.Fundamentals.OperationRatios.GrossMargin.Value, True, 1), (lambda x: x.Fundamentals.OperationRatios.QuickRatio.Value, True, 2), (lambda x: x.Fundamentals.OperationRatios.DebttoAssets.Value, False, 1)]) value_scores = self.Scores(securities, [(lambda x: x.Fundamentals.ValuationRatios.BookValuePerShare, True, 1), (lambda x: x.Fundamentals.ValuationRatios.CashReturn, True, 2), (lambda x: x.Fundamentals.ValuationRatios.EarningYield, True, 2)]) size_scores = self.Scores(securities, [(lambda x: x.Fundamentals.MarketCap, False, 1)]) securityScores = {} # Assign a combined score to each stock #for symbol, value in quality_scores.items(): for symbol in securities: quality_rank = quality_scores[symbol] value_rank = value_scores[symbol] size_rank = size_scores[symbol] securityScores[symbol] = quality_rank*self.quality_weight + value_rank*self.value_weight + size_rank*self.size_weight # VR 5/5/21: what is the right way, multiply or divide # Sort the securities by their scores sorted_stock_dict = sorted(securityScores.items(), key = lambda tup : tup[1], reverse = False) # lower score is better sorted_symbol_list = [tup[0] for tup in sorted_stock_dict][:self.num_fine] # Sort the top stocks into the long_list self.longs = [security.Symbol for security in sorted_symbol_list] for x in self.longs: self.myStocksList.append(x.Value) # Log longs symbols and their score algorithm.Log(", ".join([str(x.Symbol.Value) + ": " + str(round(securityScores[x],2)) for x in sorted_symbol_list])) def Scores(self, securities, fundamentalFactors): '''Assigns scores to each stock in added Args: securities: list of sceurities fundamentalFactors: list of 3-tuples (lambda function, bool, float) Returns: Dictionary with score for each security''' length = len(fundamentalFactors) if length == 0: return {} # Initialize helper variables scores = {} # this is the return dict object; contains security and score pairs rankedLists = [] # this contains # Normalize weights weights = [factor[2] for factor in fundamentalFactors] weights = [float(i) / sum(weights) for i in weights] # Create sorted list for each fundamental factor passed for factor in fundamentalFactors: sList = sorted(securities, key = factor[0], reverse = factor[1]) rankedLists.append(sList) # Create and save score for each symbol for s in securities: # Save symbol's rank for each fundamental factor score = 0 for j in range(length): symbol = s.Symbol.Value index = rankedLists[j].index(s) weight = weights[j] product = index * weight score += product scores[s] = score return scores
#region imports from AlgorithmImports import * #endregion from datetime import timedelta #FundamentalFactorsAlpha ''' v2 Improvements: Coarse selection will pick most liquid and have good fundamentals v3 Improvements: Do away with Insights; Once initial purchase is made, the equities are sold after 4% profit or loss, then they are not bought again ''' class CygnetCVM4AlphaV3(AlphaModel): def __init__(self, algorithm, securities): # Initialize the various variables/helpers we'll need #algorithm.Debug("Begin of CygnetCV5Alpha.__init__()") self.algo = algorithm self.myList = securities #not used at all self.lastTradeTime = self.algo.Time - timedelta(days=31) self.tradeFrequency = timedelta(days=30) self.period = timedelta(days=31) self.lastMonth = -1 self.longs = [] self.num_fine = self.algo.num_fine # normalize quality, value, size weights quality_weight, value_weight, size_weight = 1, 1, 2 weights = [quality_weight, value_weight, size_weight] weights = [float(i) / sum(weights) for i in weights] self.quality_weight = weights[0] self.value_weight = weights[1] self.size_weight = weights[2] self.myStocksList = [] #self.MyInit() #algorithm.Debug("End of CygnetCV5Alpha.__init__()") pass def buyOrder(symbol, numOfSymbols): self.algo.MarketOrder(symbol, 100) def Update(self, algorithm, data): '''Updates this alpha model with the latest data from the algorithm. This is called each time the algorithm receives data for subscribed securities Args: algorithm: The algorithm instance data: The newa available Returns: New insights''' # Return no insights if it's not time to rebalance if algorithm.Time.month == self.lastMonth: return [] self.lastMonth = algorithm.Time.month # List of insights # Insights of the form: Insight(symbol, timedelta, type, direction, magnitude, confidence, sourceModel, weight) insights = [] # Close old positions if they aren't in longs for security in algorithm.Portfolio.Values: if security.Invested and security.Symbol not in self.longs: insights.append(Insight(security.Symbol, self.algo.insightPeriod, InsightType.Price, InsightDirection.Flat, None, None, None, None)) #VR 1/17/23 #length = len(self.longs) #for i in range(length): # insights.append(Insight(self.longs[i], self.algo.insightPeriod, InsightType.Price, InsightDirection.Up, None, (length - i)**2, None, (length - i)**2 )) numOfSymbols = len(self.longs) for i in range(numOfSymbols): self.algo.MarketOrder(self.longs[i], 100) return insights def OnSecuritiesChanged(self, algorithm, changes): '''Event fired each time the we add/remove securities from the data feed Args: algorithm: The algorithm instance that experienced the change in securities changes: The security additions and removals from the algorithm''' # Get the added securities securities = [x for x in changes.AddedSecurities] # Assign quality, value, size score to each stock quality_scores = self.Scores(securities, [(lambda x: x.Fundamentals.OperationRatios.GrossMargin.Value, True, 1), (lambda x: x.Fundamentals.OperationRatios.QuickRatio.Value, True, 2), (lambda x: x.Fundamentals.OperationRatios.DebttoAssets.Value, False, 1)]) value_scores = self.Scores(securities, [(lambda x: x.Fundamentals.ValuationRatios.BookValuePerShare, True, 1), (lambda x: x.Fundamentals.ValuationRatios.CashReturn, True, 2), (lambda x: x.Fundamentals.ValuationRatios.EarningYield, True, 2)]) size_scores = self.Scores(securities, [(lambda x: x.Fundamentals.MarketCap, False, 1)]) securityScores = {} # Assign a combined score to each stock #for symbol, value in quality_scores.items(): for symbol in securities: quality_rank = quality_scores[symbol] value_rank = value_scores[symbol] size_rank = size_scores[symbol] securityScores[symbol] = quality_rank*self.quality_weight + value_rank*self.value_weight + size_rank*self.size_weight # VR 5/5/21: what is the right way, multiply or divide # Sort the securities by their scores sorted_stock_dict = sorted(securityScores.items(), key = lambda tup : tup[1], reverse = False) # lower score is better sorted_symbol_list = [tup[0] for tup in sorted_stock_dict][:self.num_fine] # Sort the top stocks into the long_list self.longs = [security.Symbol for security in sorted_symbol_list] for x in self.longs: self.myStocksList.append(x.Value) # Log longs symbols and their score algorithm.Log(", ".join([str(x.Symbol.Value) + ": " + str(round(securityScores[x],2)) for x in sorted_symbol_list])) def Scores(self, securities, fundamentalFactors): '''Assigns scores to each stock in added Args: securities: list of sceurities fundamentalFactors: list of 3-tuples (lambda function, bool, float) Returns: Dictionary with score for each security''' length = len(fundamentalFactors) if length == 0: return {} # Initialize helper variables scores = {} # this is the return dict object; contains security and score pairs rankedLists = [] # this contains # Normalize weights weights = [factor[2] for factor in fundamentalFactors] weights = [float(i) / sum(weights) for i in weights] # Create sorted list for each fundamental factor passed for factor in fundamentalFactors: sList = sorted(securities, key = factor[0], reverse = factor[1]) rankedLists.append(sList) # Create and save score for each symbol for s in securities: # Save symbol's rank for each fundamental factor score = 0 for j in range(length): symbol = s.Symbol.Value index = rankedLists[j].index(s) weight = weights[j] product = index * weight score += product scores[s] = score return scores
#region imports from AlgorithmImports import * #endregion from datetime import timedelta #FundamentalFactorsAlpha ''' Alpha CVM9 This alpha works wiht a preselected basket and buys them immediately After that it rebalances the portfolio per RiskMgmt module ''' class CygnetCVM9Alpha(AlphaModel): def __init__(self, algorithm, securities): # Initialize the various variables/helpers we'll need #algorithm.Debug("Begin of CygnetCV5Alpha.__init__()") self.algo = algorithm self.myList = securities #not used at all self.lastTradeTime = self.algo.Time - timedelta(days=31) self.tradeFrequency = timedelta(days=30) self.period = timedelta(days=31) self.tradeDone = False #algorithm.Debug("End of CygnetCVM9Alpha.__init__()") pass def Update(self, algorithm, data): # List of insights # Insights of the form: Insight(symbol, timedelta, type, direction, magnitude, confidence, sourceModel, weight) insights = [] if self.tradeDone == False: # Close old positions if they aren't in longs self.tradeDone = True for security in algorithm.Portfolio.Values: if security.Invested and security.Symbol not in self.myList: insights.append(Insight(security.Symbol, timedelta(days=1), InsightType.Price, InsightDirection.Flat, None, None, None, None)) length = len(self.myList) for i in range(length): insights.append(Insight(self.myList[i], timedelta(days=1), InsightType.Price, InsightDirection.Up, None, 1, None, 1 )) return insights def OnSecuritiesChanged(self, algorithm, changes): pass
#region imports from AlgorithmImports import * #endregion def AnalyzeNan(df1): #print NaN rows and Cols self.algo.Log ("NaN analysis of argument dataframe") self.algo.Log ("Number of rows with NaN entries: ") self.algo.Log (df1.isna().sum()) self.algo.Log ("Number of data cells with NaN entries: ") self.algo.Log (df1.isna().sum().sum()) nan_cols = [i for i in df1.columns if df1[i].isnull().all()] self.algo.Log ("Columns which have all NaNs") self.algo.Log (nan_cols) nan_cols = [i for i in df1.columns if df1[i].isnull().any()] self.algo.Log ("Columns which have one or more NaNs") self.algo.Log (nan_cols) def ConvertStringToList(string): #st.text(string) string = string.upper().replace(' ', '\t').replace(',', '\t').replace('\t\t', '\t') #st.text(string) mylist = list(string.split('\t')) return mylist def Reorder_columns(dataframe, col_name, position): temp_col = dataframe[col_name] dataframe = dataframe.drop(columns=[col_name]) dataframe.insert(loc=position, column=col_name, value=temp_col) return dataframe def NextChunk(myList, n): #Yield successive n-sized chunks from list for i in range(0, len(myList), n): yield myList[i:i + n] def AnalyzeNan2(df1): #print NaN rows and Cols print ("NaN analysis of argument dataframe") print ("Shape of dataframe") print(df1.shape) print ("Number of rows with one or more NaN entries: ") nan_rows = [i for i in df1.index if df1.iloc[i, :].isnull().any()] print(len(nan_rows)) print ("Number of rows with All NaN entries: ") nan_rows = [i for i in df1.index if df1.iloc[i, :].isnull().all()] print(len(nan_rows)) #print (df1.isna().sum()) print ("Number of data cells with NaN entries: ") print (df1.isna().sum().sum()) nan_cols = [i for i in df1.columns if df1[i].isnull().all()] print ("Columns which have all NaNs") print (nan_cols) nan_cols = [i for i in df1.columns if df1[i].isnull().any()] print ("Columns which have one or more NaNs") print (nan_cols) s = df1.isna().sum() for i in range(len(s)): if s[i] > 0: print(s.index[i], s[i]) def last_date_of_month(year, month): d1 = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] d2 = [31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] if is_leap_year(year): return d2[month] else: return d1[month] def is_leap_year(year): """ if year is a leap year return True else return False """ if year % 100 == 0: return year % 400 == 0 return year % 4 == 0 def doy(Y,M,D): """ given year, month, day return day of year Astronomical Algorithms, Jean Meeus, 2d ed, 1998, chap 7 """ if is_leap_year(Y): K = 1 else: K = 2 N = int((275 * M) / 9.0) - K * int((M + 9) / 12.0) + D - 30 return N def ymd(Y,N): """ given year = Y and day of year = N, return year, month, day Astronomical Algorithms, Jean Meeus, 2d ed, 1998, chap 7 """ if is_leap_year(Y): K = 1 else: K = 2 M = int((9 * (K + N)) / 275.0 + 0.98) if N < 32: M = 1 D = N - int((275 * M) / 9.0) + K * int((M + 9) / 12.0) + 30 return Y, M, D def RelChangePctRounded(self, p1, p2): # p1 price 1, p2 price 2 if p1 != 0: return round(100 * (p2 - p1) / p1, 2) else: return 9999.00
#region imports from AlgorithmImports import * #endregion class MyRiskMgmtModel(RiskManagementModel): # Adjust the portfolio targets and return them. If no changes emit nothing. def ManageRisk(self, algorithm, targets): return [] # Optional: Be notified when securities change def OnSecuritiesChanged(self, algorithm, changes): pass
#region imports from AlgorithmImports import * #endregion import pandas as pd import datetime from Signals import doy, UpdateATRandRelChangePctValues, RSIInitialize, ComputeRSIValues, RSIUpdate, EndOfDayRSICalcs ''' VarK4 New features VarJ2: Main driver: EOD Closing price Certain parameters are read daily Some parameters are read on Initialize only ProfitMargin param with a default value of 0.04 IgnoreObjectStore Parameter added VarK: Sells if equity drops by 2% from its purchase price VarK2: Bug fixes: # this code block is to handle when a holding is sold when profitMargin or 2% loss is met and the same stock happens to meet the end-of-day buy criterion Improved logging VarK3: Parameterize 2% stoploss; Build shorting feature VarK4: RiskMgmtStrategy 1 - Exit EOD 2 - TrailingStops 3 - Bracket (Limit and Stop orders) VarK5: ATR used in RiskMgmt (vs. fixed 5% stoploss) VarK6: Signals: EOD price / EOD rel price change pct (done) Consider 7 day or 10 or 14 day performance RSI Signal Which stock is the farthest from the mean or SMA20 or EMA14 VarK7: Trading fequncy (daily vs. weekly vs. monthly) Incorporate market indexes and decisions based on the market index values; market indexes do not work in real time; have to use ETFs as proxies SPY for SP500, ONEQ for Nasdaq composite, QQQ for Nasdaq 100 and DIA for DJIA Change universe on a weekly or monthly basis based on the ... Bring in news feed code Notes: 3/1/22 thru 4/1/22 was an up market; 1/1 thru 2/1 was down market; FAAMNvG universe FB AMZN AAPL MSFT NVDA GOOG Test case: 3/1/22 thru 4/1/22 1/1 thru 2/1 1/1 thru 4/1 Nasdaq Performce: +5.39% -9.39% -9.92% Test case: 3/1/22 thru 4/1/22 & 1/1 thru 2/1; FAAMNvG universe; Long MeanReversion Strategey (buy the worst); Fixed time entry/exit (three cases below); Timing 3/1/22 thru 4/1/22 1/1 thru 2/1 Exit order 10 mins before market close and Entry order 5 mins 25.70 % -4.16 % Both Exit and Entry orders 10 mins before market closeIn three cases 27.31 % -5.86 % Both Exit and Entry orders at MarketClose using MarketOnCloseOrder 22.85 % -5.57 % The best returns have been with Case 2 when tested in 3/1/22 thru 4/1/22 with FAAMNvG universe; first number is for 3/1 thru 4/1 was an up market; 2nd is 1/1 thru 2/1 down market Test case: 3/1/22 thru 4/1/22 & 1/1 thru 2/1; FAAMNvG universe; Long MeanReversion Strategey (buy the worst); Fixed time entry/exit (at EOD 10 mins, 5 mins before market close) Signal 3/1/22 thru 4/1/22 1/1 thru 2/1 1DayRelChgPct 25.70 % -4.16 % 7DayRelChgPct 20.16 % -9.68 % 14DayRelChgPct 19.87 % -11.32 % 21DayRelChgPct 21.41 % -16.95 % RSI (10day) 5.28 % -2.30 % RSI (2day) 20.85 % 1.68 % SMA(3) 22.85 % -2.09 % SMA(7) 10.57 % -3.91 % SMA(14) 19.49 % -6.08 % EMA(3) 20.82 % -1.63 % EMA(7) 11.98 % 0.15 % EMA(14) 23.93 % -8.81 % Test case: UsingATR for stop and limit orders; FAAMNvG universe; Long MeanReversion Strategey (buy the worst); Signal 1DayRelChgPct; Fixed Time Exit/Entry 10 and 5 mins before market close Risk Mgmt 3/1/22 thru 4/1/22 1/1 thru 2/1 Fixed Time Exit/Entry 25.70 % -4.16 % Trailing Stop Orders 24.59 % -11.02 % Bracket 20.70 % -5.36 % Test case: 2%stoploss, 2%limit for stop and limit orders; FAAMNvG universe; Long MeanReversion Strategey (buy the worst); Signal 1DayRelChgPct; Fixed Time Exit/Entry 10 and 5 mins before market close Risk Mgmt 3/1/22 thru 4/1/22 1/1 thru 2/1 Fixed Time Exit/Entry 25.71 % -4.16 % Trailing Stop Orders 3.68 % -5.68 % Bracket 2.57 % 2.49 % Test case: 5%stoploss, 5%limit for stop and limit orders; FAAMNvG universe; Long MeanReversion Strategey (buy the worst); Signal 1DayRelChgPct; Fixed Time Exit/Entry 10 and 5 mins before market close Risk Mgmt 3/1/22 thru 4/1/22 1/1 thru 2/1 Fixed Time Exit/Entry 25.70 % -4.16 % Trailing Stop Orders 26.23 % -8.94 % Bracket 19.80 % -8.46 % Best choices are 1DayRelChgPct, Fixed time exit and entry (10 mins, 5 mins) 7DayRelChgPct, 14Day, and 21Day signals produce worse results in both up and down markets RSI(10) does a poor job of picking the right stocks in up market, but did better than all RelChgPct signals in down market RSI(2) does a good job in down market and does ok in up market Test case: 3/1/22 thru 4/1/22 & 1/1 thru 2/1; FAAMNvG universe; Long MeanReversion Strategey (buy the worst); Fixed time entry/exit (at EOD 10 mins, 5 mins before market close) Signal 1/1/22 thru 4/1/22 1DayRelChgPct 3.83 % vs. Nasdaa perf -9.92% Trading Frequency: Daily 3.83 % EveryOtherDay 3.67 % Weekly -17.66 % Everymonth 4.85 % ''' class Junk(QCAlgorithm): def Initialize(self): self.SetStartDate(2022, 3, 1) self.SetEndDate(2022, 4, 1) self.SetCash(100000) #self.myList = ['IBM', 'DIS', 'X'] #self.myList = ['PBW', 'COPX', 'CLOU', 'DRIV', 'FINX', 'QYLD', 'BOTZ', 'PAVE', 'LIT', 'SIL', 'SDIV', 'MLPA', 'NUSI', 'PBD'] #self.myList = ['XLB','XLC','XLY','XLP','XLE','XLF','XLV','XLI','XLRE','XLK','XLU'] # PBW COPX CLOU DRIV FINX QYLD BOTZ PAVE LIT SIL SDIV MLPA NUSI PBD # JETS EWZ VPU SPYD CMRE BGS BHC GLD DOW NVEC XOM self.useATR = True self.signalName = "1DayRelChgPct" # "SMA" # "EMA" #"1DayRelChgPct" #"RSI" # self.frequency = "EveryDay" # "EveryDay", "EveryOtherDay" "EveryWeek" "EveryMonth" self.frequencyDayCount = {"EveryDay" : 1, "EveryOtherDay" : 2, "EveryWeek" : 7, "EveryMonth" : 30} self.currentHoldingEntryPrice = 0.0 self.currentHoldingExitPrice = 0.0 self.priorHolding = "" self.priorHoldingEntryPrice = 0.0 self.priorHoldingExitPrice = 0.0 self.priorHoldingTradeSize = 0 self.priorHoldingTradeReturn = 0.0 self.priorHoldingPL = 0.0 self.portfolioValueAt358pm = 0.0 self.newHolding = "" self.switchStock = True self.tradeSize = 0 self.cumReturn = 100.0 self.firstDay = True self.tradeReturn = 0.0 self.stopLossOrderTicket = "" self.limiOrderTicket = "" self.ignoreObjectStore = True self.myList = [] self.ReadParams() self.ResetVariablesAtBeginOfDay() WeekDayNames = ["Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday"] self.myColumns = ['PriorDayClosingPrice', 'LatestClosingPrice', 'LatestHighPrice', 'LatestLowPrice', 'LatestVolume', \ 'PurchasePrice', 'PurchasedQty', 'StopPrice', 'LimitPrice', \ "ATR", '1DayRelChgPct', "7DayRelChgPct", "14DayRelChgPct", "21DayRelChgPct", "RSIIndVal", "RSI", "EMA", "SMA"] self.priceData = pd.DataFrame(index=self.myList, columns=self.myColumns) self.priceData = self.priceData.fillna(0.0) #self.SetBrokerageModel(BrokerageName.InteractiveBrokersBrokerage, AccountType.Margin) self.Debug(f"Algo Start time Year: {self.Time.year} Month: {self.Time.month} Date: {self.Time.day} Hour: {self.Time.hour} Minute: {self.Time.minute} ") self.AlgoStartTime = datetime.datetime(self.Time.year, self.Time.month, self.Time.day, self.Time.hour, self.Time.minute) self.AlgoStartDOY = doy(self.AlgoStartTime.year, self.AlgoStartTime.month, self.AlgoStartTime.day) xday = self.AlgoStartTime.weekday() self.Debug(f"Algo Start DOY: {self.AlgoStartDOY} Weekday Number: {xday} Weekday Name: {WeekDayNames[xday]} ") xyz = self.frequencyDayCount[self.frequency] self.AlgoLastTradeTime = self.AlgoStartTime - timedelta(days=xyz) #by setting the lastTradeTime in the past enables to trade on first day #currDate = datetime.datetime(self.Time.year, self.Time.month, self.Time.day) - timedelta(days=2) #daysSinceLastTrade = currDate - self.AlgoLastTradeTime #self.Debug(f"Days Since Last Trade: {daysSinceLastTrade}") self.SetTimeZone("America/New_York") for tickerSymbol in self.myList: symbol = self.AddEquity(tickerSymbol, Resolution.Minute) symbol.SetDataNormalizationMode(DataNormalizationMode.Raw); symbol.SlippageModel = ConstantSlippageModel(0.0) symbol.FeeModel = ConstantFeeModel(0.0, "USD") self.SPY = self.AddEquity("SPY", Resolution.Minute) self.SPY.SetDataNormalizationMode(DataNormalizationMode.Raw) self.SetBenchmark("SPY") # schedule an event to fire every trading day for a security the # time rule here tells it to fire 10 minutes after SPY's market open self.Schedule.On(self.DateRules.EveryDay("SPY"), self.TimeRules.AfterMarketOpen("SPY", 10), self.EveryDayAfterMarketOpen) self.Schedule.On(self.DateRules.EveryDay("SPY"), self.TimeRules.BeforeMarketClose("SPY", 10), self.EndOfTradingDayExitOrder) self.Schedule.On(self.DateRules.EveryDay("SPY"), self.TimeRules.BeforeMarketClose("SPY", 5), self.EndOfTradingDayEntryOrder) self.currentHolding = "" if self.ignoreObjectStore == False: if self.ObjectStore.ContainsKey("myCurrentHoldingSymbol"): self.currentHolding = self.ObjectStore.Read("myCurrentHoldingSymbol") self.currentHoldingSize = 0 if self.ignoreObjectStore == False: if self.ObjectStore.ContainsKey("myCurrentHoldingSize"): self.currentHoldingSize = int(self.ObjectStore.Read("myCurrentHoldingSize")) self.Debug("VarK7-RotationStrategy" + \ "\n Risk Mgmt Strategy param (1 - EOD trade, 2 - trailing stop order 3 - bracket: " + str(self.riskMgmtStrategy) + \ "\n Trade Direction (1 long or 0 notrade or -1 short): " + str(self.tradeDirection) + \ "\n Strategy param: (1 - buy best (trend following), 2 - buy worst (mean reversion))" + str(self.strat) + \ "\n Universe: " + str(self.myList) + \ "\n CurrentHolding: " + self.currentHolding + \ "\n CurrentHoldingSize: " + str(self.currentHoldingSize) + \ "\n LiquidateInitialHolding: " + str(self.liquidateInitialHolding) + \ "\n initialHolding: " + self.initialHolding + \ "\n initialHoldingSize: " + str(self.initialHoldingSize) + \ "\n profitMargin (0.01 for 1%): " + str(self.profitMargin) + \ "\n stopLoss (0.01 for 1%): " + str(self.stopLoss) + \ "\n ignoreObjectStore: " + str(self.ignoreObjectStore) ) self.ResetVariablesAtBeginOfDay() #self.Debug("InitialHolding params " + str(self.liquidateInitialHolding) + " " + self.initialHolding + " " + str(self.initialHoldingSize)) for tickerSymbol in self.myList: hist = self.History(tickerSymbol, 1, Resolution.Daily) for s in hist: self.priceData.loc[tickerSymbol, 'PriorDayClosingPrice'] = s.Close self.Debug(str(s.Time) + " " + tickerSymbol + " Prior day closing price: " + str(s.Close)) #self.myPriorDayClosingPrices.update({tickerSymbol : s.Close}) ##RSIInitialize(self) ##self.InitATRValues() UpdateATRandRelChangePctValues(self) #self.Plot("Series Name", self.priceData["PriorDayClosingPrice"]) def OnData(self, data): # figure out worse performing stock # if the worst performing stock is the same as what is in portfolio, do nothing # if not, liquidate and buy # Note that not all subscribed symbols may be present on every onData call; for example if there are no trades # also note that many OnData calls can be made within 1 minute even tho the Resolution used is Resolution.Minute #self.Debug(str(self.Time)) first minute bar timestamp is 2020-12-31 09:31:00; time printed is the end time of the trade bar if data.Bars == None: return if (self.Time.minute % 5 != 0): return #self.Debug(f"year: {self.Time.year} Month: {self.Time.month} Date: {self.Time.day} Hour: {self.Time.hour} Minute: {self.Time.minute} ") #if self.Time.hour == 15 and self.Time.minute == 59: #self.Time.month == 6 and self.Time.day == 25 and # self.Debug(str(self.Time) + " Cum return " + str(round(self.cumReturn, 2))) ##RSIUpdate(self, data) for tickerSymbol in self.myList: relChange = 0.0 if data.Bars.ContainsKey(tickerSymbol): try: symbolBar = data.Bars[tickerSymbol] #self.myLatestClosingPrices.update({tickerSymbol : symbolBar.Close}) self.priceData.loc[tickerSymbol, 'LatestClosingPrice'] = symbolBar.Close if symbolBar.High > self.priceData.loc[tickerSymbol, 'LatestHighPrice']: self.priceData.loc[tickerSymbol, 'LatestHighPrice'] = symbolBar.High if symbolBar.Low > self.priceData.loc[tickerSymbol, 'LatestLowPrice']: self.priceData.loc[tickerSymbol, 'LatestLowPrice'] = symbolBar.Low self.priceData.loc[tickerSymbol, 'LatestVolume'] += symbolBar.Volume #if not self.myPriorDayClosingPrices.get(tickerSymbol) == None and not self.myLatestClosingPrices.get(tickerSymbol) == None: currClosingPrice = self.priceData.loc[tickerSymbol, 'LatestClosingPrice'] prevClosingPrice = self.priceData.loc[tickerSymbol, 'PriorDayClosingPrice'] if prevClosingPrice == 0.0: self.Debug(tickerSymbol + " prevClosingPrice is ZERO!") else: relChange = 100 * (currClosingPrice-prevClosingPrice) / prevClosingPrice self.priceData.loc[tickerSymbol, '1DayRelChgPct'] = relChange #self.Debug(tickerSymbol + " prevClosingPrice: " + str(round(prevClosingPrice,2)) + " latestClosingPrice: " + str(round(currClosingPrice,2))) #prftMargin = self.profitMargin # * (1 - (self.Time.hour - 9) / 10 ) if self.riskMgmtStrategy == 1: #Wait for end of day actions to trigger sell and buy pass if self.riskMgmtStrategy == 2: if tickerSymbol == self.currentHolding: #self.SetupOrUpdateStopOrder(tickerSymbol, cp) cp = self.priceData.loc[tickerSymbol, 'LatestClosingPrice'] pp = self.priceData.loc[tickerSymbol, 'PurchasePrice'] sp = self.priceData.loc[tickerSymbol, 'StopPrice'] atrVal = self.priceData.loc[tickerSymbol, 'ATR'] if self.tradeDirection * (cp - pp) > 0: #setup a stopMarketOrder when trade moves favorbly newStopPrice = round((1 - self.tradeDirection * self.stopLoss) * cp, 2) # trail by stopLoss percentage points if self.useATR == True: newStopPrice = round(cp - self.tradeDirection * atrVal, 2) self.SetupOrUpdateStopOrder(tickerSymbol, newStopPrice) if self.riskMgmtStrategy == 3: pass ''' if tickerSymbol == self.currentHolding: if not math.isnan(self.priceData.loc[tickerSymbol, 'PurchasePrice']): cp = self.priceData.loc[tickerSymbol, 'LatestClosingPrice'] pp = self.priceData.loc[tickerSymbol, 'PurchasePrice'] if self.tradeDirection == 1: #Long if cp > (1 + self.profitMargin) * pp: self.ExecuteExitOrder() self.Debug("Selling " + tickerSymbol + " as " + str(round(100*self.profitMargin, 1)) + " % profit margin condition is met") if cp < (1 - self.stopLoss) * pp: self.ExecuteExitOrder() self.Debug("Selling " + tickerSymbol + " as " + str(round(100*self.stopLoss, 1)) + "% loss exit condition is met") pass if self.tradeDirection == -1: #short if cp < (1 - self.profitMargin) * pp: self.ExecuteExitOrder() self.Debug("Buying back " + tickerSymbol + " as " + str(round(100*self.profitMargin, 1)) + " % profit margin condition is met") pass if cp > (1 + self.stopLoss) * pp: self.ExecuteExitOrder() self.Debug("Buying back " + tickerSymbol + " as " + str(round(100*self.stopLoss, 1)) + "% loss exit condition is met") pass ''' except KeyNotFoundException: #this should not happen self.Debug(tickerSymbol + " KeyNotFoundException caught") def EndOfTradingDayEntryOrder(self): if self.tradeDirection == 0: return dayCount = self.frequencyDayCount[self.frequency] diff = self.Time - self.AlgoLastTradeTime if diff < timedelta(days=dayCount): return #self.Log(f"EndOfTradingDayEntryOrder 5 min before close: Fired at: {self.Time}") if self.switchStock == True: # buy the new holding if not self.newHolding == "": tickerSymbol = self.newHolding #currClosingPrice = data.Bars[self.newHolding].Close currClosingPrice = self.priceData.loc[tickerSymbol, 'LatestClosingPrice'] if currClosingPrice == 0.0: self.Debug(str(self.Time) + " Current price of " + str(tickerSymbol) + " is ZERO!") return self.tradeSize = math.floor(0.99 * self.Portfolio.TotalPortfolioValue / currClosingPrice) #0.99 multipler gives 1% for buffer for non-marginable equities when the price changes by the time IBKR receives the order self.MarketOrder(self.newHolding, self.tradeDirection*self.tradeSize) #do not use self.MarketOnCloseOrder(self.newHolding, self.tradeDirection*self.tradeSize) self.Debug("Entry trade " + tickerSymbol + " " + str(self.tradeDirection*self.tradeSize) + " shares at " + str(round(currClosingPrice, 2)) ) self.AlgoLastTradeTime = datetime.datetime(self.Time.year, self.Time.month, self.Time.day, self.Time.hour, self.Time.minute-5) self.currentHolding = self.newHolding self.currentHoldingEntryPrice = currClosingPrice self.priceData.loc[tickerSymbol, 'PurchasePrice'] = currClosingPrice self.priceData.loc[tickerSymbol, 'PurchasedQty'] = self.tradeSize # persist the current holding symbol and num of shares in ObjectStore self.ObjectStore.Save("myCurrentHoldingSymbol", self.currentHolding) self.ObjectStore.Save("myCurrentHoldingSize", str(self.tradeSize)) self.ObjectStore.Save("myCurrentLimitOrder", self.limiOrderTicket) self.ObjectStore.Save("myCurrentStopLossOrder", self.stopLossOrderTicket) if self.riskMgmtStrategy == 1: pass if self.riskMgmtStrategy == 2: stopPrice = round(currClosingPrice * (1 - self.tradeDirection * self.stopLoss), 2) if self.useATR == True: atrVal = self.priceData.loc[tickerSymbol, 'ATR'] stopPrice = round(currClosingPrice - self.tradeDirection * atrVal, 2) self.SetupOrUpdateStopOrder(tickerSymbol, stopPrice) if self.riskMgmtStrategy == 3: limitPrice = round(currClosingPrice * (1 + self.tradeDirection * self.profitMargin), 2) stopPrice = round(currClosingPrice * (1 - self.tradeDirection * self.stopLoss), 2) if self.useATR == True: atrVal = self.priceData.loc[tickerSymbol, 'ATR'] limitPrice = round(currClosingPrice + self.tradeDirection * atrVal, 2) stopPrice = round(currClosingPrice - self.tradeDirection * atrVal, 2) self.SetupLimitOrder(tickerSymbol, limitPrice) self.SetupOrUpdateStopOrder(tickerSymbol, stopPrice) # reference on orders # https://github.com/QuantConnect/Lean/blob/master/Algorithm.Python/OrderTicketDemoAlgorithm.py def CancelOpenOrders(self): if self.riskMgmtStrategy == 1: return if not self.stopLossOrderTicket == "": response = self.stopLossOrderTicket.Cancel("Cancelled open stop order") if response == OrderStatus.Canceled: self.Debug("Open stoploss order cancelled successfully") self.stopLossOrderTicket = "" else: self.Debug("No open stoploss orders to cancel") if not self.limiOrderTicket == "": response = self.limiOrderTicket.Cancel("Cancelled open limit order") if response == OrderStatus.Canceled: self.Debug("Open limit order cancelled successfully") self.limiOrderTicket = "" else: self.Debug("No open limit orders to cancel") def OnOrderEvent(self, orderEvent): order = self.Transactions.GetOrderById(orderEvent.OrderId) #self.Log("{0}: {1}: {2}".format(self.Time, order.Type, orderEvent)) self.Log("{0}: {1}".format(order.Type, orderEvent)) if orderEvent.Status == OrderStatus.Filled: #self.stopLossOrderTicket = "" self.Debug("Order filled successfully") def SetupOrUpdateStopOrder(self, tickerSymbol, stopPrice): #self.Log(f"SetupStopOrder: {self.Time}") if not self.currentHolding == "": qty = self.Portfolio[self.currentHolding].Quantity if self.stopLossOrderTicket == "": #self.DefaultOrderProperties.TimeInForce = TimeInForce.Day #self.DefaultOrderProperties.TimeInForce = TimeInForce.GoodTilCanceled this is the default timeframe self.stopLossOrderTicket = self.StopMarketOrder(self.currentHolding, -1 * qty, stopPrice) self.priceData.loc[tickerSymbol, 'StopPrice'] = stopPrice #self.Portfolio[self.currentHolding].Invested IsLong Quantity Price else: currentStopPrice = self.priceData.loc[tickerSymbol, 'StopPrice'] pp = self.priceData.loc[tickerSymbol, 'PurchasePrice'] # stop order for long position or short position if (qty > 0 and ( (stopPrice - currentStopPrice) > 0.005 * pp) ) or \ (qty < 0 and ( (currentStopPrice - stopPrice) > 0.005 * pp) ): # issue updates to order only if there is at least 0.5% movement updateOrderFields = UpdateOrderFields() updateOrderFields.StopPrice = stopPrice updateOrderFields.Tag = "Update #{0}".format(len(self.stopLossOrderTicket.UpdateRequests) + 1) response = self.stopLossOrderTicket.Update(updateOrderFields) self.Log(f"Updating stop order to {stopPrice}") self.priceData.loc[tickerSymbol, 'StopPrice'] = stopPrice if response == OrderStatus.Submitted: self.Debug("Order submitted successfully") def SetupMarketOnCloseOrder(self, tickerSymbol): #self.Log(f"SetupMarketOnCloseOrder: {self.Time}") if not self.currentHolding == "": qty = self.Portfolio[self.currentHolding].Quantity if self.stopLossOrderTicket == "": self.stopLossOrderTicket = self.MarketOnCloseOrder(self.currentHolding, -1 * qty) def SetupLimitOrder(self, tickerSymbol, limitPrice): #self.Log(f"SetupLimitOrder: {self.Time}") if not self.currentHolding == "": qty = self.Portfolio[self.currentHolding].Quantity if self.limiOrderTicket == "": self.limiOrderTicket = self.LimitOrder(self.currentHolding, -1 * qty, limitPrice) self.priceData.loc[tickerSymbol, 'LimitPrice'] = limitPrice def Convert(string): string = string.upper().replace(' ', '\t').replace(',', '\t').replace('\t\t', '\t') stringList = list(string.split('\t')) return stringList def ReadParams(self): #called once in Initialize only self.riskMgmtStrategy = 1 if self.GetParameter("RiskMgmtStrategy") == None: self.riskMgmtStrategy = 2 # else: self.riskMgmtStrategy = int(self.GetParameter("RiskMgmtStrategy")) ''' riskMgmtStrategy 1. Exit at EOD (10 mins before close) price 2. Trailing stop order at 5% below (for long positions) or above (for short positions) purchase price 3. Bracket orders with a fixed profit margin limit order and a fixed stop loss exit orders ''' self.strat = 2 # buy worst performing if self.GetParameter("Strategy") == None: self.strat = 2 # 1- buy the best performing, 2 means buy the worst perforing else: self.strat = int(self.GetParameter("Strategy")) # (1 to buy best or 2 to buy worst) universe = "AA BCRX CLF CNR DXC ET M NTLA SKY THC ANF BKE EXP FL FLGT LOGI LPX MOH MRNA OAS OMI QDEL SIG SONO WFG WSM" universe = self.GetParameter("Universe") if universe == None: #self.myList = ['PBW', 'COPX', 'CLOU', 'DRIV', 'FINX', 'QYLD', 'BOTZ', 'PAVE', 'LIT', 'SIL', 'SDIV', 'MLPA', 'NUSI', 'PBD'] self.myList = ['AA', 'BCRX', 'CAR', 'CLF', 'CNR', 'DXC', 'ET', 'M', 'NTLA', 'SKY', 'THC'] else: universe = universe.upper().replace(' ', '\t').replace(',', '\t').replace('\t\t', '\t') self.myList = list(universe.split('\t')) self.ignoreObjectStore = True param = self.GetParameter("IgnoreObjectStore") if not param == None: if param == "Yes": self.ignoreObjectStore = True else: self.ignoreObjectStore = False #default values self.liquidateInitialHolding = False self.initialHolding = "" self.initialHoldingSize = 0 param = self.GetParameter("LiquidateInitialHolding") if param == "Yes": self.liquidateInitialHolding = True param = self.GetParameter("InitialHolding") if not param == None: self.initialHolding = param param = self.GetParameter("InitialHoldingSize") if not param == None: self.initialHoldingSize = int(param) self.profitMargin = 0.04 param = self.GetParameter("ProfitMargin") if not param == None: self.profitMargin = float(param) self.stopLoss = 0.04 param = self.GetParameter("StopLoss") if not param == None: self.stopLoss = float(param) self.tradeDirection = 1 # possible values are 1 (long), 0 (no trade), -1 (short) param = self.GetParameter("TradeDirection") if not param == None: td = int(param) if td == 1 or td == 0 or td == -1: self.tradeDirection = td else: self.tradeDirection = 1 def ResetVariablesAtBeginOfDay(self): #log information for day that just ended #self.Debug(str(self.Time) + " Begin of day") #output looks like this 2021-01-04 09:31:00 2020-12-31 23:58:00 Begin of day; it looks like it is called with the first bar of the following day ''' self.Debug(str(self.Time) + "\t" + str(self.switchStock) + "\t" + self.priorHolding + "\t" + str(self.priorHoldingTradeSize) \ + "\t" + str(round(self.priorHoldingEntryPrice,4)) + "\t" + str(round(self.priorHoldingExitPrice,2)) + "\t" + \ str(round(self.priorHoldingPL,2)) + "\t"+ str(round(self.priorHoldingTradeReturn,4)) + "\t"+ str(round(self.cumReturn,4)) \ + "\t" + self.currentHolding + "\t" + str(self.tradeSize) + "\t" + str(round(self.currentHoldingEntryPrice,4)) \ + "\t" + str(round(self.tradeSize*self.currentHoldingEntryPrice,2)) + "\t" + str(round(self.portfolioValueAt358pm,2))) ''' # reset variables at the end of the day self.bestStock = "" self.worstStock = "" self.lowestRelChange = 999 self.highestRelChange = -999 #self.Debug(str(self.Time) + " Variables are reset") def EveryDayAfterMarketOpen(self): #self.Log(f"EveryDayAfterMarketOpen.SPY 10 min after open: Fired at: {self.Time}") self.ResetVariablesAtBeginOfDay() ##ComputeRSIValues(self) # self.ReadParams2() # this update occurs once a day in the begining for tickerSymbol in self.myList: hist = self.History(tickerSymbol, 1, Resolution.Daily) for s in hist: #self.Debug(str(s.Time) + " " + tickerSymbol + " Prior day closing price: " + str(s.Close)) #self.myPriorDayClosingPrices.update({tickerSymbol : s.Close}) self.priceData.loc[tickerSymbol, 'PriorDayClosingPrice'] = s.Close #ComputeRSIValues(self) ##self.InitATRValues() UpdateATRandRelChangePctValues(self) def InitATRValues(self): for tickerSymbol in self.myList: self.atr = self.ATR(tickerSymbol, 14, MovingAverageType.Simple, Resolution.Daily) history = self.History([tickerSymbol], 20, Resolution.Daily) for bar in history.itertuples(): #creating a trade bar from rows of history dataframe tradebar = TradeBar(bar.Index[1], tickerSymbol, bar.open, bar.high, bar.low, bar.close, bar.volume) self.atr.Update(tradebar) self.priceData.loc[tickerSymbol, 'ATR'] = self.atr.Current.Value cp = self.priceData.loc[tickerSymbol, 'PriorDayClosingPrice'] atr = self.priceData.loc[tickerSymbol, 'ATR'] self.Debug(f"{tickerSymbol} Prior day closing price: {cp} ATR: {round(atr,2)} ATR %: {round(100 * atr / cp, 2)}") def ExecuteExitOrder(self): dayCount = self.frequencyDayCount[self.frequency] diff = self.Time - self.AlgoLastTradeTime if diff < timedelta(days=dayCount): return self.CancelOpenOrders() # first cancel any open stop orders # first sell curernt holding if not self.currentHolding == "": self.currentHoldingExitPrice = self.priceData.loc[self.currentHolding, 'LatestClosingPrice'] if self.Portfolio.ContainsKey(self.currentHolding): qty = self.Portfolio[self.currentHolding].Quantity #Quantity is positive if long position, negative if short #if self.Portfolio[self.currentHolding].IsLong: if qty != 0: self.MarketOrder(self.currentHolding, -1*qty) #do not use self.MarketOnCloseOrder(self.currentHolding, -1*qty) self.Debug("Exit trade " + str(self.currentHolding) + " Qty: " + str(self.tradeDirection * qty) + " shares at " + str(round(self.currentHoldingExitPrice, 2)) ) #self.MarketOrder(self.currentHolding, -1*self.tradeDirection*self.tradeSize) self.tradeReturn = self.tradeDirection * (self.currentHoldingExitPrice - self.currentHoldingEntryPrice) / self.currentHoldingEntryPrice self.priorHolding = self.currentHolding self.priorHoldingTradeSize = self.tradeSize self.priorHoldingEntryPrice = self.currentHoldingEntryPrice self.priorHoldingExitPrice = self.currentHoldingExitPrice self.priorHoldingPL = self.tradeDirection * self.priorHoldingTradeSize * (self.priorHoldingExitPrice - self.priorHoldingEntryPrice) self.priorHoldingTradeReturn = self.tradeReturn self.cumReturn = self.cumReturn * (1 + self.tradeReturn) #self.Debug(str(self.Time) + " Liquidating " + str(self.tradeSize) + " shares of " + self.currentHolding + " Trade return: " + str(round(self.tradeReturn, 4)) + " Cum return " + str(round(self.cumReturn, 2))) self.portfolioValueAt358pm = self.Portfolio.TotalPortfolioValue self.currentHolding = "" self.ObjectStore.Save("myCurrentHoldingSymbol", "") self.ObjectStore.Save("myCurrentHoldingSize", str(0)) self.ObjectStore.Save("myCurrentLimitOrder", "") self.ObjectStore.Save("myCurrentStopLossOrder", "") def EndOfTradingDayExitOrder(self): #self.Log(f"EndOfTradingDayExitOrder.SPY 10 min before close: Fired at: {self.Time}") ##EndOfDayRSICalcs(self) UpdateATRandRelChangePctValues(self) bestStock = self.priceData.loc[:, self.signalName].idxmax() worstStock = self.priceData.loc[:, self.signalName].idxmin() highestRelChange = self.priceData.loc[bestStock, self.signalName] lowestRelChange = self.priceData.loc[worstStock, self.signalName] #self.Debug("Worst: " + worstStock + " " + str(round(lowestRelChange, 2)) + "% Best: " + bestStock + " " + str(round(highestRelChange, 2)) + "% " + str(self.liquidateInitialHolding) + " " + self.self.initialHolding + " " + str(self.initialHoldingSize)) self.Debug("Signal: " + self.signalName + " Worst: " + worstStock + " " + str(round(lowestRelChange, 2)) + "% Best: " + bestStock + " " + str(round(highestRelChange, 2)) + "%") if self.strat == 1: self.newHolding = bestStock relChange = highestRelChange else: self.newHolding = worstStock relChange = lowestRelChange if self.newHolding == self.currentHolding: self.switchStock = False else: self.switchStock = True #self.Debug("self.switchStock = " + str(self.switchStock) + " Curr holding " + self.currentHolding + " New holding " + self.newHolding) if self.liquidateInitialHolding == True: self.liquidateInitialHolding = False # this block of code shoudl be executed only once #self.Liquidate(self.initialHolding) if self.Securities.ContainsKey(self.initialHolding): self.MarketOrder(self.initialHolding, -1*self.initialHoldingSize) # this code block is to handle when a holding is sold when limit or stoploss order is executed and the same stock happens to meet the end-of-day buy criterion if self.switchStock == False: if self.Portfolio.ContainsKey(self.currentHolding) == False: # this means the portfolio is empty self.switchStock = True # this flag causes the buy order to go thru in EndOfTradingDayEntryOrder() call self.Debug(self.currentHolding + " Holding is sold when profitMargin or 2% loss exit is met and the same stock happens to meet the end-of-day buy criterion") if self.switchStock == True: self.ExecuteExitOrder() def OnEndOfAlgorithm(self): #self.Debug(str(self.Time) + " OnEndOfAlgorithm") # output looks like 2021-06-28 16:00:00 2021-06-28 16:00:00 OnEndOfAlgorithm self.Debug(str(self.Time) + " Strategy param: " + str(self.strat) + " Cum return (%): " + str(round(self.cumReturn-100, 2)) + " Portfolio: " + str(self.myList)) pass
#region imports from AlgorithmImports import * #endregion import pandas as pd import datetime class CygnetSignal(): def __init__(self, algorithm, securities): # Initialize the various variables/helpers we'll need self.currentHoldingIndex = -1 myColumns = ['PriorDayClosingPrice', 'LatestClosingPrice', 'LatestHighPrice', 'LatestLowPrice', 'LatestVolume', \ 'PurchasePrice', 'PurchasedQty', 'StopPrice', 'LimitPrice', \ "ATR", '1DayRelChgPct', "7DayRelChgPct", "14DayRelChgPct", "21DayRelChgPct", "RSIIndVal", "RSI", "EMA", "SMA"] self.myList = securities self.priceData = pd.DataFrame(index=self.myList, columns=myColumns) self.priceData = self.priceData.fillna(0.0) self.algo = algorithm #self.algo.Debug(f"CygnetSignal creation {self.myList}") self.newHolding = "" self.currentHolding = "" self.histData = {} self.ComputeSignalValues() dummyvar = 1.0 pass def RelChangePctRounded(self, p1, p2): # p1 price 1, p2 price 2 if p1 != 0: return round(100 * (p2 - p1) / p1, 2) else: return 9999.00 def UpdateWithLatestMarketDataFeed(self, algo, data): # update with the latest closing price if(algo.Time.minute % 5 != 0): # update only every 5 minutes return #self.algo.Debug(f"In CygnetSignal.UpdateWithLatestMarketDataFeed method {self.algo.Time}") for tickerSymbol in self.myList: if data.Bars.ContainsKey(tickerSymbol): symbolBar = data.Bars[tickerSymbol] self.priceData.loc[tickerSymbol, 'LatestClosingPrice'] = symbolBar.Close self.priceData.loc[tickerSymbol, 'LatestVolume'] += symbolBar.Volume # these are not accurate; fix the code later if symbolBar.High > self.priceData.loc[tickerSymbol, 'LatestHighPrice']: self.priceData.loc[tickerSymbol, 'LatestHighPrice'] = symbolBar.High if symbolBar.Low > self.priceData.loc[tickerSymbol, 'LatestLowPrice']: self.priceData.loc[tickerSymbol, 'LatestLowPrice'] = symbolBar.Low def ComputeSignalValues(self): for tickerSymbol in self.myList: hist = self.algo.History([tickerSymbol], 22, Resolution.Daily)["close"].unstack(level=0) hist.columns = ["close"] #rename colname to "close" from the {security symbol} #self.algo.Debug(hist.head()) # Update RelChgPct values cp = self.priceData.loc[tickerSymbol, 'LatestClosingPrice'] if cp == 0.0: cp = 1.0 self.priceData.loc[tickerSymbol, '1DayRelChgPct'] = self.RelChangePctRounded (hist.close[-1], cp) self.priceData.loc[tickerSymbol, '7DayRelChgPct'] = self.RelChangePctRounded (hist.close[-7], cp) self.priceData.loc[tickerSymbol, '14DayRelChgPct'] = self.RelChangePctRounded (hist.close[-14], cp) self.priceData.loc[tickerSymbol, '21DayRelChgPct'] = self.RelChangePctRounded (hist.close[-21], cp) #update ATR values ''' this itertuples() needs to be looked at; VR 2/23/23 atr = self.algo.ATR(tickerSymbol, 14, MovingAverageType.Simple, Resolution.Daily) for bar in hist.itertuples(): tradebar = TradeBar(bar.Index[1], tickerSymbol, bar.open, bar.high, bar.low, bar.close, bar.volume) atr.Update(tradebar) self.priceData.loc[tickerSymbol, 'ATR'] = atr.Current.Value ''' #cp = self.pric #atrVal = self.priceData.loc[tickerSymbol, 'ATR'] #self.Debug(f"{tickerSymbol} Latest closing price: {cp} ATR: {round(atrVal,2)} ATR %: {round(100 * atrVal / cp, 2)}") #update RSI values ''' cp = self.priceData.loc[tickerSymbol, 'LatestClosingPrice'] rsi = self.algo.RSI(tickerSymbol, 10, MovingAverageType.Simple, Resolution.Daily) for time, row in hist.loc[tickerSymbol].iterrows(): rsi.Update(time, row["close"]) rsi.Update(datetime.datetime.now(), cp) self.priceData.loc[tickerSymbol, 'RSI'] = rsi.Current.Value #update SMA values cp = self.priceData.loc[tickerSymbol, 'LatestClosingPrice'] sma = self.algo.SMA(tickerSymbol, 14, Resolution.Daily) for time, row in hist.loc[tickerSymbol].iterrows(): sma.Update(time, row["close"]) sma.Update(datetime.datetime.now(), cp) self.priceData.loc[tickerSymbol, 'SMA'] = round(cp / sma.Current.Value, 2) #update EMA values EMA does not work correclty cp = self.priceData.loc[tickerSymbol, 'LatestClosingPrice'] ema = self.algo.EMA(tickerSymbol, 14, Resolution.Daily) for time, row in hist.loc[tickerSymbol].iterrows(): ema.Update(time, row["close"]) ema.Update(datetime.datetime.now(), cp) self.priceData.loc[tickerSymbol, 'EMA'] = round(cp / ema.Current.Value, 2) ''' pass def GetEquityToTrade(self, signalName, strat): #UpdateATRandRelChangePctValues(self) bestStock = self.priceData.loc[:, signalName].idxmax() worstStock = self.priceData.loc[:, signalName].idxmin() highestSignalValue = self.priceData.loc[bestStock, signalName] lowestSignalValue = self.priceData.loc[worstStock, signalName] self.algo.Debug("Signal: " + signalName + " Worst: " + worstStock + " " + str(round(lowestSignalValue, 2)) + \ "% Best: " + bestStock + " " + str(round(highestSignalValue, 2)) + "%") if strat == 1: return bestStock, highestSignalValue if strat == 2: return worstStock, lowestSignalValue def is_leap_year(year): """ if year is a leap year return True else return False """ if year % 100 == 0: return year % 400 == 0 return year % 4 == 0 def doy(Y,M,D): """ given year, month, day return day of year Astronomical Algorithms, Jean Meeus, 2d ed, 1998, chap 7 """ if is_leap_year(Y): K = 1 else: K = 2 N = int((275 * M) / 9.0) - K * int((M + 9) / 12.0) + D - 30 return N def ymd(Y,N): """ given year = Y and day of year = N, return year, month, day Astronomical Algorithms, Jean Meeus, 2d ed, 1998, chap 7 """ if is_leap_year(Y): K = 1 else: K = 2 M = int((9 * (K + N)) / 275.0 + 0.98) if N < 32: M = 1 D = N - int((275 * M) / 9.0) + K * int((M + 9) / 12.0) + 30 return Y, M, D
from AlgorithmImports import * from Alphas.EmaCrossAlphaModel import EmaCrossAlphaModel from Alphas.HistoricalReturnsAlphaModel import HistoricalReturnsAlphaModel from Execution.ImmediateExecutionModel import ImmediateExecutionModel from Portfolio.EqualWeightingPortfolioConstructionModel import EqualWeightingPortfolioConstructionModel from Risk.MaximumDrawdownPercentPerSecurity import MaximumDrawdownPercentPerSecurity from Risk.TrailingStopRiskManagementModel import TrailingStopRiskManagementModel from Risk.MaximumUnrealizedProfitPercentPerSecurity import MaximumUnrealizedProfitPercentPerSecurity from Selection.QC500UniverseSelectionModel import QC500UniverseSelectionModel from io import StringIO from CygUtils import ConvertStringToList from CygCM1RotationAlpha import CygnetCM1RotationAlpha from CygCM2MomentumAlpha import CygnetCM2MomentumAlpha from CygCM3HQMAlpha import CygnetCM3HQMAlpha from CygCM3HQMAlpha2 import CygnetCM3HQMAlpha2 from CygCVM4AlphaV2 import CygnetCVM4AlphaV2 from CygCVM4AlphaV3 import CygnetCVM4AlphaV3 from CygCV5Alpha import CygnetCV5Alpha from CygCM7Alpha import CygnetCM7Alpha from CygCM7Alpha2 import CygnetCM7Alpha2 from CygCV8PiotroskiFScoreAlpha import CygnetCV8PiotroskiFscoreAlpha, PiotroskiFScore from CygCVM9Alpha import CygnetCVM9Alpha from CygCM10HighestLoserAlpha import CygnetHighestLoserAlpha from CygCM12Alpha import CygnetCM12Alpha from CygCM12Alpha2 import CygnetCM12Alpha2 from CygCM12Alpha3 import CygnetCM12Alpha3 ''' Note on onData() call backs (ad History data) and Resolution if Resoltion.Daily is used, then a call will come at 2023-03-31 00:00:00 SPY Closing price: 403.7 2023-04-01 00:00:00 SPY Closing price: 409.39 2023-04-04 00:00:00 SPY Closing price: 410.95 It has a date of 3/31/23 0:0:0 and the closing price is that of 3/30 However, if the resolution is Minute, then it has the right date and time. The first bar starts with 9:31 and ends in 16:00 2023-03-31 15:59:00 SPY Closing price: 409.64 2023-03-31 16:00:00 SPY Closing price: 409.39 make sure you add self.SetTimeZone("America/New_York") to get the time in ET With startdate specified as 2023-1-1 and enddate as 2023-4-12, here are the callbacks; Jan 1 was Sunday, no trading, Jan 2 market was closed no trading market opened on Jan 3 @ 930 am. However, the first callback is with a date of Jan 4 with the closing price on Jan 3. Jan 16 was MLK day and markets were closed. Jan 17 market reopned. We see a bar with Jan 18 date with Jan 17 closing price. 2023-01-01 00:00:00 Launching analysis for 3b42fcd335fe2075a613be2696c54bc6 with LEAN Engine v2.5.0.0.15384 2023-01-04 00:00:00 Wednesday SPY Closing price: 379.37 2023-01-05 00:00:00 Thursday SPY Closing price: 382.30 2023-01-06 00:00:00 Friday SPY Closing price: 377.94 2023-01-07 00:00:00 Saturday SPY Closing price: 386.60 2023-01-10 00:00:00 Tuesday SPY Closing price: 386.39 2023-01-11 00:00:00 Wednesday SPY Closing price: 389.09 2023-01-12 00:00:00 Thursday SPY Closing price: 394.02 2023-01-13 00:00:00 Friday SPY Closing price: 395.45 2023-01-14 00:00:00 Saturday SPY Closing price: 396.98 2023-01-18 00:00:00 Wednesday SPY Closing price: 396.25 2023-01-19 00:00:00 Thursday SPY Closing price: 390.00 2023-01-20 00:00:00 Friday SPY Closing price: 387.16 2023-01-21 00:00:00 Saturday SPY Closing price: 394.38 2023-01-24 00:00:00 Tuesday SPY Closing price: 399.11 2023-01-10 00:00:00 Tuesday SPY Closing price: 386.39 However, if Update() method is employed to get realtime data using self.AddUniverseSelection or self.AddUniverse functions: the Update() function is called differently. It is called on Mon / Tues / Wed / Thu / Fri / Sat. See --- End of notes on OnData() and Update() callbacks Alphas to developed: 2. 14 day EMA with Heiken Ashi candles 12. Piotrioski's FScore Semi-developed: 8. Mean reversion strat based KMeans ML algo identified clusters 9. DecisionTree/ LSTM prediction model 11. Hurst exponent Features already developed: 1. Non-halal exclusion list and apply it to all strats Features to develop: 1. Develop shorting feature in Alphas 2 thru 8 ie. the use of self.tradeDirection = -1 param in all the Alphas 2. More precise lookbacks in CM3 and CM7 alphas (21, 63, 126 days vs. 1m, 3m, 6m lookbacks) Alphas to develop: 1. Larry Connors 7-5; buy after 7 consecuritve down days and sell after holding for 5 days 2. 14 day EMA with Heiken Ashi candles 3. 200 SMA long term trading - this strategy is for really long cycle investing; buy / sell when SMA200 crosses over 4. Dual momentum based on monthly performnace of two different asset classes (SPY vs. GLD vs. Treasuries) 5. Go long => 21 EMA and 50 EMA sloping up, Stochastic fast line crossing the slow line from the bottom, and both the lines are at 20 or below Go short => 21 EMA and 50 EMA sloping down, Stochastic fast line crossing the slow line from the top, and both the lines are at 80 or higher 6. SuperTrend 7. Flat trend for 1 year and uptrend in the last one month 8. Mean reversion strat based KMeans ML algo identified clusters 9. DecisionTree / LSTM prediction model 10. ML Algo picking the strats to use based on Strats performance vs. economic conditions / indicators 11. Hurst exponent 12. Piotrioski's F Score 13. Altman Z score 14. Benish M score 15. Penny stocks with p/s ratios, high short interetst ration, sales growth 16. (StockRover scores) Good value, quality, growth, sentiment, piotroski f score, and altman z scores, high margin of safety (fair value being higher the current price) Seen on Quant-Investing site, what are these? Magic Formula ERP5 Quality High Dividend Tiny Titans Piotroski F-Score Net Net Value Composite Shareholder Yield CM1 Strategy Parameters: : ATR used in RiskMgmt (vs. fixed 5% stoploss) : Signals: EOD price / EOD rel price change pct (done) Consider 7 day or 10 or 14 day performance RSI Signal Which stock is the farthest from the mean or SMA20 or EMA14 : Trading fequncy (daily vs. weekly vs. monthly) CM1 Future enhancements: Incorporate market indexes and decisions based on the market index values; market indexes do not work in real time; have to use ETFs as proxies SPY for SP500, ONEQ for Nasdaq composite, QQQ for Nasdaq 100 and DIA for DJIA Change universe on a weekly or monthly basis based on the ... Bring in news feed code ''' class CygnetStrategy(QCAlgorithm): def Initialize(self): ''' periodNumber = int(self.GetParameter("PeriodNumber")) startYear = 2021 startMonth = periodNumber * 3 if (startMonth > 12): q, r = divmod(startMonth, 12) startYear = startYear + q startMonth = r self.SetStartDate(startYear, startMonth, 1) endYear = startYear endMonth = startMonth + 3 if (endMonth > 12): q, r = divmod(endMonth, 12) endYear = startYear + 1 endMonth = r self.SetEndDate(endYear, endMonth, 1)''' year = int(self.GetParameter("Year")) self.SetStartDate(year, 3, 17) self.SetEndDate(year, 3, 31) #self.SetStartDate(2017, 1, 1) # Set Start Date #self.SetEndDate(2018, 1, 1) # Set End Date self.SetCash(100000) # Set Strategy Cash self.myList = [] self.riskMgmt = 1 # nullriskmgmt self.alphaStrategy = "CM1" self.universe = "SP500" self.stratDesc = "CM1-DailyRotation" self.insightPeriod = timedelta(days=22) self.myExclList = [] self.myCoarseList = [] self.myFineList = [] self.tradeDirection = 1 self.mode = "Backtest" #Backtest or Live strats = ["", "CM1", "CM2", "CM3", "CVM4", "CV5", "CHR6", "CM7", "CV8", "CVM9", "CM10", "CM11", "CM12"] stratDesriptions = ["", "CM1-DailyRotation", "CM2-CygnetMomentum", "CM3-HQM Perf", \ "CVM4-CygnetValueMomentum(WR11)", "CV5-CygnetValuationRatios", "CHR6-QuantConnect HistoricalReturns alpha", \ "CM7-QM Perf", "CV8-CygentPiotroskiFscore", "CVM9-Modified CVM4", \ "CM10-HighestLoser", "CM11", "CM12-WorstQtrBestMonth", "pl"] riskMgmts = ["", "NullRiskMgmt", "TrailingStop5%", "Maxdrawdown4%", "MaxUnrlzd4%", "Bracketed4%Gain6%Loss"] universes = ["", "SP500", "HalalSP500", "SP500SymbolsAddedPriorTo2017", "ManualList"] tradeDirections = ["", "Long", "Short"] # self.SetTimeZone("America/New_York") if self.GetParameter("Strategy") != None: self.alphaStrategy = strats[int(self.GetParameter("Strategy"))] self.stratDesc = stratDesriptions[int(self.GetParameter("Strategy"))] if self.GetParameter("RiskMgmt") != None: self.riskMgmt = riskMgmts[int(self.GetParameter("RiskMgmt"))] if self.GetParameter("Universe") != None: self.universe = universes[int(self.GetParameter("Universe"))] if self.GetParameter("InsightPeriod") != None: x = int(self.GetParameter("InsightPeriod")) self.insightPeriod = timedelta(days=x) if self.GetParameter("TradeDirection") != None: self.tradeDirection = int(self.GetParameter("TradeDirection")) if self.GetParameter("Mode") != None: self.mode = self.GetParameter("Mode") self.BuildExclusionSymbolsList() # populates self.myExclList self.Debug(f"Strategy {self.stratDesc} Risk Mgmt {self.riskMgmt} Universe {self.universe} Start date {str(self.SetStartDate)} end date {str(self.SetEndDate)}") #self.alphaStrategy = "CV5" #CM1 CygnetRotationAlpha, CM2 CygnetMomentumAlpha, CM3 CygnetHQMAlpha, CVM4-CygnetValueMomentum(WR11), CV5 CygnetCV5Alpha self.SetBrokerageModel(BrokerageName.InteractiveBrokersBrokerage, AccountType.Margin) self.SetBenchmark("SPY") seeder = FuncSecuritySeeder(self.GetLastKnownPrices) self.SetSecurityInitializer(lambda security: seeder.SeedSecurity(security)) # Universe selection if self.alphaStrategy == "CM1": self.signalName = "1DayRelChgPct" self.strat = 1 #1 best performing, 2 worst performing #self.tradeDirection = 1 self.BuildSymbolsList("ManualList") # SP500 HalalSP500 SP500SymbolsAddedPriorTo2017 ManualList #self.SubscribeForData(Resolution.Minute) self.UniverseSettings.Resolution = Resolution.Minute symbols = [Symbol.Create(mySymbol, SecurityType.Equity, Market.USA) for mySymbol in self.myList] self.AddUniverseSelection(ManualUniverseSelectionModel(symbols)) self.AddAlpha(CygnetRotationAlpha(self, self.myList)) if self.alphaStrategy == "CM10": self.signalName = "1DayRelChgPct" self.strat = 2 #1 best performing, 2 worst performing self.tradeDirection = 1 self.BuildSymbolsList("SP500") # SP500 HalalSP500 SP500SymbolsAddedPriorTo2017 ManualList #self.SubscribeForData(Resolution.Minute) self.UniverseSettings.Resolution = Resolution.Minute symbols = [Symbol.Create(mySymbol, SecurityType.Equity, Market.USA) for mySymbol in self.myList] self.AddUniverseSelection(ManualUniverseSelectionModel(symbols)) self.AddAlpha(CygnetHighestLoserAlpha(self, self.myList)) if self.alphaStrategy == "CM2": self.BuildSymbolsList(self.universe) # SP500 HalalSP500 SP500SymbolsAddedPriorTo2017 ManualList #self.SubscribeForData(Resolution.Daily) self.UniverseSettings.Resolution = Resolution.Daily symbols = [Symbol.Create(mySymbol, SecurityType.Equity, Market.USA) for mySymbol in self.myList] self.AddUniverseSelection(ManualUniverseSelectionModel(symbols)) self.AddAlpha(CygnetMomentumAlpha(self, self.myList)) if self.alphaStrategy == "CM3": self.BuildSymbolsList(self.universe) # SP500 HalalSP500 SP500SymbolsAddedPriorTo2017 ManualList #self.SubscribeForData(Resolution.Daily) self.UniverseSettings.Resolution = Resolution.Daily symbols = [Symbol.Create(mySymbol, SecurityType.Equity, Market.USA) for mySymbol in self.myList] self.AddUniverseSelection(ManualUniverseSelectionModel(symbols)) self.AddAlpha(CygnetHQMAlpha2(self, self.myList)) #vr 4/1/23 if self.alphaStrategy == "CVM4": self.lastMonth = -1 self.num_coarse = 200 self.num_fine = 20 self.UniverseSettings.Resolution = Resolution.Daily self.AddUniverse(self.CVM4CoarseSelectionFunction, self.CVM4FineSelectionFunction) self.BuildSymbolsList(self.universe) # SP500 HalalSP500 SP500SymbolsAddedPriorTo2017 ManualList self.cvm4Alpha = CygnetCVM4AlphaV3(self, self.myList) #vr 1/17/23 self.AddAlpha(self.cvm4Alpha) if self.alphaStrategy == "CV5": self.lastMonth = -1 self.num_coarse = 200 self.num_fine = 20 self.fundamentalData = None #Dataframe self.UniverseSettings.Resolution = Resolution.Daily self.AddUniverse(self.CV5CoarseSelectionFunction, self.CV5FineSelectionFunction) self.BuildSymbolsList(self.universe) # SP500 HalalSP500 SP500SymbolsAddedPriorTo2017 ManualList self.AddAlpha(CygnetCV5Alpha(self, self.myList)) if self.alphaStrategy == "CHR6": self.UniverseSettings.Resolution = Resolution.Daily #self.SetUniverseSelection(QC500UniverseSelectionModel()) self.BuildSymbolsList("SP500") # SP500 HalalSP500 SP500SymbolsAddedPriorTo2017 ManualList symbols = [Symbol.Create(mySymbol, SecurityType.Equity, Market.USA) for mySymbol in self.myList] self.AddUniverseSelection(ManualUniverseSelectionModel(symbols)) #self.SubscribeForData(Resolution.Daily) self.AddAlpha(HistoricalReturnsAlphaModel(14, Resolution.Daily)) if self.alphaStrategy == "CM7": self.BuildSymbolsList(self.universe) # SP500 HalalSP500 SP500SymbolsAddedPriorTo2017 ManualList #self.SubscribeForData(Resolution.Daily) self.UniverseSettings.Resolution = Resolution.Daily symbols = [Symbol.Create(mySymbol, SecurityType.Equity, Market.USA) for mySymbol in self.myList] self.AddUniverseSelection(ManualUniverseSelectionModel(symbols)) self.AddAlpha(CygnetCM7Alpha2(self, self.myList)) if self.alphaStrategy == "CV8": self.lastMonth = -1 self.num_coarse = 500 self.num_fine = 20 self.UniverseSettings.Resolution = Resolution.Daily self.AddUniverse(self.CV8CoarseSelectionFunction, self.CV8FineSelectionFunction) self.BuildSymbolsList(self.universe) # SP500 HalalSP500 SP500SymbolsAddedPriorTo2017 ManualList self.AddAlpha(CygnetPiotroskiFscoreAlpha(self, self.myList)) if self.alphaStrategy == "CVM9": #manual universe self.BuildSymbolsList("CVM9-ManualList") # SP500 HalalSP500 SP500SymbolsAddedPriorTo2017 ManualList self.UniverseSettings.Resolution = Resolution.Daily symbols = [Symbol.Create(mySymbol, SecurityType.Equity, Market.USA) for mySymbol in self.myList] self.AddUniverseSelection(ManualUniverseSelectionModel(symbols)) self.AddAlpha(CygnetCVM9Alpha(self, self.myList)) if self.alphaStrategy == "CM12": self.BuildSymbolsList(self.universe) # SP500 HalalSP500 SP500SymbolsAddedPriorTo2017 ManualList self.SubscribeForData(Resolution.Daily) self.UniverseSettings.Resolution = Resolution.Hour symbols = [Symbol.Create(mySymbol, SecurityType.Equity, Market.USA) for mySymbol in self.myList] #self.AddUniverse(self.Universe.ETF("SPY", Market.USA, self.UniverseSettings)) not working self.AddUniverseSelection(ManualUniverseSelectionModel(symbols)) self.AddAlpha(CygnetCM12Alpha3(self, self.myList)) #self.SetUniverseSelection(QC500UniverseSelectionModel()) #manual universe #self.UniverseSettings.Resolution = Resolution.Daily #symbols = [Symbol.Create(mySymbol, SecurityType.Equity, Market.USA) for mySymbol in self.myList] #self.AddUniverseSelection(ManualUniverseSelectionModel(symbols)) #self.AddAlpha(EmaCrossAlphaModel(50, 200, Resolution.Daily)) #self.AddAlpha(HistoricalReturnsAlphaModel(14, Resolution.Daily)) self.SetExecution(ImmediateExecutionModel()) self.SetPortfolioConstruction(EqualWeightingPortfolioConstructionModel()) #self.SetPortfolioConstruction(BlackLittermanOptimizationPortfolioConstructionModel()) if self.riskMgmt == "NullRiskMgmt": self.SetRiskManagement(NullRiskManagementModel()) if self.riskMgmt == "TrailingStop5%": self.SetRiskManagement(TrailingStopRiskManagementModel(0.05)) if self.riskMgmt == "Maxdrawdown4%": self.SetRiskManagement(MaximumDrawdownPercentPerSecurity(0.04)) # 1.0 = 100% effectively, EOD exit if self.riskMgmt == "MaxUnrlzd4%": self.SetRiskManagement(MaximumUnrealizedProfitPercentPerSecurity(0.04)) # sell at a profit of 4% if self.riskMgmt == "Bracketed4%Gain6%Loss": self.SetRiskManagement(MaximumUnrealizedProfitPercentPerSecurity(0.04)) # sell at a profit of 4% self.SetRiskManagement(MaximumDrawdownPercentPerSecurity(0.06)) # sell at a loss of 6% if self.riskMgmt == "MaxUnrlzd4%" and self.alphaStrategy == "CM10": self.SetRiskManagement(MaximumUnrealizedProfitPercentPerSecurity(0.0025)) def OnData(self, data: Slice): pass ''' if not self.Portfolio.Invested: self.SetHoldings("FB", 0.33) ''' def BuildExclusionSymbolsList(self): self.Log("Begin BuildExclusionSymbolsList()") csv = self.Download('https://raw.githubusercontent.com/barryplasmid/EquityExclusionList/main/EquityExclusionList.csv') #self.myExclusionList = ConvertStringToList("BF.B LVS MGM MO PENN PM STZ TAP TSN WYNN CZR LVS MGM PENN WYNN BAC C JPM WFC CFG CMA FITB FRC HBAN KEY MTB PNC RF SIVB TFC USB ZION") df = pd.read_csv(StringIO(csv)) self.myExclList = list(df.Symbol) #self.myExclList = [] #additionalSymbols = ConvertStringToList(self.additionalExclusions) #("PENN PM STZ TAP") pass def BuildSymbolsList(self, symbolsListParam: str): self.Log("Begin BuildSymbolsListForManualUniverse()") if symbolsListParam == "SP500": #csv = self.Download('https://raw.githubusercontent.com/datasets/s-and-p-500-companies/master/data/constituents.csv') 'donot use; old csv = self.Download('https://raw.githubusercontent.com/barryplasmid/PublicLists/main/SP500-List-04152023.csv') df = pd.read_csv(StringIO(csv)) self.myList = list(df.Symbol) #[x for x in self.df.Symbol] pass if symbolsListParam == "HalalSP500": SP500SymbolsSPUS = "A AAP AAPL ABMD ABT ADBE ADI ADSK AKAM ALGN ALLE ALXN AMAT AMD AMGN ANET ANSS AOS APD APTV ATVI AVY AZO BAX BDX BIIB BIO BKNG BSX CDNS CDW CERN CHD CHRW CL CLX CMI COG COO COP CPRT CRM CSCO CTAS CTSH CTVA CTXS CVX DHI DHR DLTR DOV DXCM EBAY ECL EL EMR EOG EQR ETN ETSY EW EXPD FAST FB FBHS FFIV FLS FMC FTNT FTV GILD GOOG GOOGL GPC GRMN GWW HD HOLX HPQ HSIC HSY IDXX IEX ILMN INCY INTC INTU IPGP ISRG IT ITW JBHT JCI JNJ JNPR KLAC KMB KO KSU LIN LLY LOW LRCX MAS MDLZ MDT MKC MLM MMM MNST MRK MSFT MSI MTD MU MXIM NEM NKE NLOK NOW NSC NVDA NVR ODFL ORLY OTIS PAYC PEP PG PKG PKI PNR POOL PPG PXD QCOM REGN RHI RMD ROK ROL ROP ROST SBUX SHW SNPS STE SWK SYK TEL TER TFX TGT TIF TJX TMO TSCO TT TWTR TXN TYL UA UAA ULTA UNP UPS VAR VFC VMC VRSN VRTX WAT WM WST XRAY XYL ZBH ZBRA" self.myList = ConvertStringToList(SP500SymbolsSPUS) pass if symbolsListParam == "SP500SymbolsAddedPriorTo2017": SP500SymbolsAddedPriorTo2017 = "MMM ABT ABBV ACN ATVI ADM ADBE ADP AAP AES AFL A AIG APD AKAM ALK ALB ALLE LNT ALL GOOGL GOOG MO AMZN AEE AAL AEP AXP AMT AWK AMP ABC AME AMGN APH ADI ANTM AON APA AAPL AMAT APTV AIZ T ADSK AZO AVB AVY BLL BAC BBWI BAX BDX BRK.B BBY BIIB BLK BK BA BKNG BWA BXP BSX BMY AVGO BF.B CHRW CPB COF CAH KMX CCL CAT CBRE CNC CNP CERN CF SCHW CHTR CVX CMG CB CHD CI CINF CTAS CSCO C CFG CTXS CLX CME CMS KO CTSH CL CMCSA CMA CAG COP STZ COO COST CTRA CCI CSX CMI CVS DHI DVA DE DAL XRAY DVN DLR DFS DIS DG DLTR DOV DTE DUK EMN EBAY ECL EIX EW EA EMR ETR EOG EFX EQIX EQR ESS EL ES EXC EXPE EXPD EXR XOM FFIV FAST FRT FDX FIS FISV FMC F FTV FBHS FOXA FOX AJG GRMN GD GIS GPC GILD GL GPN GM GS GWW HAL HIG HAS HCA PEAK HSIC HSY HES HPE HOLX HD HON HRL HST HWM HPQ ITW ILMN INTC ICE IBM IP IPG IFF INTU ISRG IVZ IRM JBHT J JNJ JCI JPM JNPR K KEY KMB KIM KMI KHC KR LHX LH LRCX LEN LLY LNC LIN LKQ LMT LOW LUMN LYB MTB MRO MPC MMC MLM MAS MA MKC MCD MDT MRK FB MTD MCHP MU MSFT MAA MHK TAP MDLZ MNST MOS NDAQ NTAP NFLX NWL NEM NWSA NWS NEE NLSN NKE NSC NOC NLOK NRG NUE NVDA ORLY OXY OKE ORCL PCAR PH PYPL PNR PEP PKI PFE PM PSX PXD PNC PPG PFG PG PGR PLD PRU PEG PSA PHM PVH QRVO PWR DGX RL O REGN RF RSG RHI ROP ROST RCL CRM SLB STX SEE SHW SPG SWKS SJM SNA SO LUV SWK SBUX SYK SYF SYY TGT TEL TXT TMO TJX TSCO TT TDG TRV TFC TSN UDR ULTA UAA UA UNP UAL UNH UPS URI UHS VTR VRSN VRSK VZ VRTX VFC VTRS V VNO VMC WMT WBA WEC WFC WELL WDC WMB WTW WYNN XEL XYL YUM ZBH ZION ZTS" self.myList = ConvertStringToList(SP500SymbolsAddedPriorTo2017) pass if symbolsListParam == "ManualList": manualList = "MSFT AAPL AMZN META NVDA GOOG" #manualList = "SQ DVN FANG TTD CLR TRGP RCL BLDR AA THC" #manualList = "VCYT,SQ,CRWD,DDD,SPLK,QTRX,RIVN,QLYS,ABNB,NVDA,ADBE,TER,GOOGL,AAPL,INTU,AMAT,AMD,CLOU,MSFT,SPRE,AOS,AMAGX,UBER,SNOW,FTV,FB,EXPD,IBM,NXPI,BR,CRM,AMANX,AMCR,WBA,CSCO,FTNT,XOM,PANW,TX,DKS,ABBV,CAH" #"FB AMZN AAPL MSFT GOOG" # ["FB", "AMZN", "AAPL", "MSFT", "GOOG"] #manualList = "TGT ORLY AAP YUM DG AZO DLTR" #manualList = "AA,BCRX,CAR,CLF,CNR,DXC,ET,M,NTLA,SKY,THC" self.myList = ConvertStringToList(manualList) if symbolsListParam == "CVM9-ManualList": manualList = "VRTX GOLD ATVI AA NUE REGN KR MRO LHX PSX ACC CERN FANG INCY NLSN TWNK" self.myList = ConvertStringToList(manualList) if self.alphaStrategy == "CM2" or self.alphaStrategy == "CM3": self.myList.append("SPY") #must add SPY for CM1 and CM3 strategies self.myList.sort() #for x in self.myExclList: # if x in self.myList: # self.myList.remove(x) #self.myList = self.myList[:200] self.Log(f"Selected Symbol List: {symbolsListParam} Num of symbols: {len(self.myList)} First 5 symbols: {self.myList[:5]}") def SubscribeForData(self, dataResolution): if self.alphaStrategy == "CM1" or self.alphaStrategy == "CM2" or self.alphaStrategy == "CM3": for symbol in self.myList: self.AddEquity(symbol, dataResolution) # Resolution.Daily or Resolution.Minute self.Log(f"Manual universe num of symbols: {len(self.myList)} First 5 symbols: {self.myList[:5]}") def CVM4CoarseSelectionFunction(self, coarse): # If not time to rebalance, keep the same universe if self.Time.month == self.lastMonth: return Universe.Unchanged # Else reassign the month variable self.lastMonth = self.Time.month if coarse == None: self.Debug("Coarse is null") return # Sort by top dollar volume: most liquid to least liquid selected = sorted([x for x in coarse if x.HasFundamentalData and x.Price > 5], key = lambda x: x.DollarVolume, reverse=True) #sortedByDollarVolume = sorted([x for x in coarse if x.HasFundamentalData], key=lambda x: x.DollarVolume, reverse=True) #selected = [x for x in sortedByDollarVolume if x.Price > 10 and x.DollarVolume > 100000000 ] for x in selected: if x.Symbol.Value in self.myExclList: selected.remove(x) coarseList = [x.Symbol for x in selected[0:self.num_coarse]] for x in coarseList: self.myCoarseList.append(x.Value) return coarseList def CVM4FineSelectionFunction(self, fine): # Filter the fine data for equities with non-zero/non-null Value, filtered_fine = [x.Symbol for x in fine if x.OperationRatios.GrossMargin.Value > 0 and x.OperationRatios.QuickRatio.Value > 0 and x.OperationRatios.DebttoAssets.Value > 0 and x.ValuationRatios.BookValuePerShare > 0 and x.ValuationRatios.CashReturn > 0 and x.ValuationRatios.EarningYield > 0 and x.MarketCap > 0] for x in filtered_fine: self.myFineList.append(x.Value) return filtered_fine def CV5CoarseSelectionFunction(self, allEquityUniverse): #self.Log("Begin CV5CoarseSelectionFunction()") # If not time to rebalance, keep the same universe if self.Time.month == self.lastMonth: return Universe.Unchanged # Else reassign the month variable self.lastMonth = self.Time.month if allEquityUniverse == None: self.Log("allEquityUniverse is null") return # Sort by top dollar volume: most liquid to least liquid selected = sorted([x for x in allEquityUniverse if x.HasFundamentalData and x.Price > 5], key = lambda x: x.DollarVolume, reverse=True) for x in selected: if x.Symbol.Value in self.myExclList: selected.remove(x) coarseSelected = [x.Symbol for x in selected[:self.num_coarse]] return coarseSelected def CV5FineSelectionFunction(self, coarseFilteredUniverse): #self.Log("Begin CV5FineSelectionFunction()") fine_filtered = [] self.fundamentalData = pd.DataFrame(columns=["Symbol", "PERatio", "PBRatio", "PSRatio", "EnterpriseValue", "EVToEBITDA", "GrossProfit", "DivYield5Year"]) j = 0 for x in coarseFilteredUniverse: self.fundamentalData.loc[j] = [ x.Symbol.Value, x.ValuationRatios.PERatio, x.ValuationRatios.PBRatio, x.ValuationRatios.PSRatio, x.CompanyProfile.EnterpriseValue, x.ValuationRatios.EVToEBITDA, x.FinancialStatements.IncomeStatement.GrossProfit.TwelveMonths, x.ValuationRatios.DivYield5Year] j = j + 1 self.fundamentalData.set_index("Symbol", inplace=True) self.Log(self.fundamentalData.shape) self.fine_filtered = [x.Symbol for x in coarseFilteredUniverse] self.Log(len(fine_filtered)) return self.fine_filtered def CV8CoarseSelectionFunction(self, coarse): # If not time to rebalance, keep the same universe if self.Time.month == self.lastMonth: return Universe.Unchanged #self.Log("Begin CV8CoarseSelectionFunction()") CoarseWithFundamental = [x for x in coarse if (x.HasFundamentalData) and (float(x.Price) > 5) and x.Market == Market.USA] # and x.Symbol.Value in self.myList ] for x in CoarseWithFundamental: if x.Symbol.Value in self.myExclList: CoarseWithFundamental.remove(x) sortedByDollarVolume = sorted(CoarseWithFundamental, key=lambda x: x.DollarVolume, reverse=True) top = sortedByDollarVolume[:self.num_coarse] return [i.Symbol for i in top] def CV8FineSelectionFunction(self, fine): if self.Time.month == self.lastMonth: return Universe.Unchanged self.lastMonth = self.Time.month self.Log("Begin CV8FineSelectionFunction()") filtered_fine = [x for x in fine if x.FinancialStatements.IncomeStatement.NetIncome.TwelveMonths and x.FinancialStatements.CashFlowStatement.CashFlowFromContinuingOperatingActivities.TwelveMonths and x.OperationRatios.ROA.ThreeMonths and x.OperationRatios.ROA.OneYear and x.FinancialStatements.BalanceSheet.ShareIssued.ThreeMonths and x.FinancialStatements.BalanceSheet.ShareIssued.TwelveMonths and x.OperationRatios.GrossMargin.ThreeMonths and x.OperationRatios.GrossMargin.OneYear and x.OperationRatios.LongTermDebtEquityRatio.ThreeMonths and x.OperationRatios.LongTermDebtEquityRatio.OneYear and x.OperationRatios.CurrentRatio.ThreeMonths and x.OperationRatios.CurrentRatio.OneYear and x.OperationRatios.AssetsTurnover.ThreeMonths and x.OperationRatios.AssetsTurnover.OneYear and x.ValuationRatios.NormalizedPERatio] fineSelection = [] for x in filtered_fine: pfscore = PiotroskiFScore(x.FinancialStatements.IncomeStatement.NetIncome.TwelveMonths, x.FinancialStatements.CashFlowStatement.CashFlowFromContinuingOperatingActivities.TwelveMonths, x.OperationRatios.ROA.ThreeMonths, x.OperationRatios.ROA.OneYear, x.FinancialStatements.BalanceSheet.ShareIssued.ThreeMonths, x.FinancialStatements.BalanceSheet.ShareIssued.TwelveMonths, x.OperationRatios.GrossMargin.ThreeMonths, x.OperationRatios.GrossMargin.OneYear, x.OperationRatios.LongTermDebtEquityRatio.ThreeMonths, x.OperationRatios.LongTermDebtEquityRatio.OneYear, x.OperationRatios.CurrentRatio.ThreeMonths, x.OperationRatios.CurrentRatio.OneYear, x.OperationRatios.AssetsTurnover.ThreeMonths, x.OperationRatios.AssetsTurnover.OneYear) score = pfscore.ObjectiveScore() #self.Log(f"{x.Symbol.Value} {score}") if score > 7: self.Log(f"{x.Symbol.Value} {x.CompanyProfile.HeadquarterCountry} {score}") fineSelection.append(x) fineSelection = sorted(fineSelection, key=lambda x: x.ValuationRatios.NormalizedPERatio, reverse = False) if len(fineSelection) < 20: return [x.Symbol for x in fineSelection] else: return [x.Symbol for x in fineSelection[:self.num_fine]] def OnEndOfAlgorithm(self): #Needed only in case of CVM4 if self.alphaStrategy == "CVM4": coarseSet = set(self.myCoarseList) fineSet = set(self.myFineList) #self.Debug(coarseSet) #self.Debug(fineSet) #self.Debug("CoarseSet\n") #for x in coarseSet: # self.Debug(f"{x} {self.myCoarseList.count(x)}\n") self.Debug("FineSet\n") for x in self.cvm4Alpha.myStocksList: self.Debug(f"{x} {self.myFineList.count(x)}\n") pass