Overall Statistics
Total Orders
201
Average Win
2.15%
Average Loss
-1.03%
Compounding Annual Return
22.020%
Drawdown
41.400%
Expectancy
1.120
Start Equity
100000.00
End Equity
317487.34
Net Profit
217.487%
Sharpe Ratio
0.853
Sortino Ratio
1.017
Probabilistic Sharpe Ratio
34.782%
Loss Rate
31%
Win Rate
69%
Profit-Loss Ratio
2.09
Alpha
-0.023
Beta
0.269
Annual Standard Deviation
0.289
Annual Variance
0.084
Information Ratio
-1.419
Tracking Error
0.532
Treynor Ratio
0.917
Total Fees
$4055.84
Estimated Strategy Capacity
$1600000000000000.00
Lowest Capacity Asset
ZECUSD E3
Portfolio Turnover
0.42%
# https://quantpedia.com/strategies/blended-factors-in-cryptocurrencies/
#
# The investment universe consists of 11 cryptocurrencies (the full list can be found in the paper). Firstly, construct the equally-weighted benchmark, which allocates
# an equal fraction of the 10% exposure budget to all coins available on the rebalancing date and holds this portfolio until the next rebalancing date. Secondly, construct
# the equally-weighted factor composite portfolios for each rebalancing period and each factor (momentum, value, and carry). Nextly, factor-based portfolios are combined 
# with the underlying benchmarks to create enhanced portfolios. Add together the equally-weighted factor portfolios with the equally-weighted benchmark. Occasionally, 
# there could be negative weights in the underlying currencies, which can occur if the factor portfolio has a negative weight that in absolute value is larger than the
# positive exposure in the benchmark. In those cases, an investor should set the ticker weight to zero, since nowadays, the short positions are challenging to establish
# given the market infrastructure available today. The portfolio is rebalanced weekly.
# 
# QC Implementation changes:
#   - The investment universe consists of 6 cryptocurrencies with crypto network data available.
#   - The raw carry metric is defined as sum total coin issuance over the preceding seven days, divided by the coins outstanding at the beginning of those seven days. => negative part is ommited.
#   - Only 10 percent of portoflio is traded due to high crypto volatility.

import numpy as np
from AlgorithmImports import *
from typing import List, Dict

class BlendedFactorsinCryptocurrencies(QCAlgorithm):

    def Initialize(self) -> None:
        self.SetStartDate(2019, 1, 1)
        self.SetCash(100000)
        
        self.period: int = 7
        self.count_days: int = 1
        self.percentage_traded: float = 0.1
        
        self.symbols: Dict[str, str] = {
            'BTC' : 'BTCUSD',
            'ETH' : 'ETHUSD', 
            'LTC' : 'LTCUSD', 
            'ETC' : 'ETCUSD',
            'XMR' : 'XMRUSD',
            'ZEC' : 'ZECUSD'
        }
        
        self.data: Dict[str, SymbolData] = {}

        self.SetBrokerageModel(BrokerageName.Bitfinex)
                        
        for crypto, ticker in self.symbols.items():
            data: Securities = self.AddCrypto(ticker, Resolution.Daily, Market.Bitfinex)
            self.AddData(CryptoNetworkData, crypto, Resolution.Daily)
            self.data[crypto] = SymbolData(self.period)
            
    def OnData(self, data: Slice) -> None:
        crypto_data_last_update_date: Dict[Symbol, datetime.date] = CryptoNetworkData.get_last_update_date()

        # Store daily price data.
        for crypto, ticker in self.symbols.items():
            if crypto in data and data[crypto]:
                cap_mrkt_cur_usd: float = data[crypto].Capmrktcurusd
                txtfr_val_adj_usd: float = data[crypto].Txtfrvaladjusd
                coin_issuance: float = data[crypto].Price
                
                if cap_mrkt_cur_usd != 0 and txtfr_val_adj_usd != 0 and coin_issuance != 0:
                    self.data[crypto].update_data(cap_mrkt_cur_usd, txtfr_val_adj_usd, coin_issuance)
            
            if ticker in data:
                if data[ticker]:
                    self.data[crypto].update_price(data[ticker].Price)
        
        if self.Time.date().weekday() != 0:
            return

        if self.count_days == 7:
            self.count_days = 1
        else:
            self.count_days = self.count_days + 1
            return
        
        symbols_ready = [x for x in self.symbols if self.data[x].is_ready() and self.Securities[x].GetLastData() and self.Time.date() < crypto_data_last_update_date[x]]
        if len(symbols_ready) == 0:
            self.Liquidate()
            return
        
        weight: Dict[ticker, float] = {}
        partial_weight: float = self.percentage_traded / len(symbols_ready)
        
        carry_metric_long: List[str] = []
        carry_metric_short: List[str] = []
        valuation_metric_long: List[str] = []
        valuation_metric_short: List[str] = []
        momentum_long: List[str] = []
        momentum_short: List[str] = []
        
        for crypto in symbols_ready:
            ticker: str = self.symbols[crypto]
            weight[ticker] = partial_weight   # Set benchmark weight.
            
            carry_metric: float = self.data[crypto].carry_metric()
            valuation_metric: float = self.data[crypto].valuation_metric()
            momentum: float = self.data[crypto].momentum()
            
            carry_metric_long.append(ticker) if carry_metric > 0 else carry_metric_short.append(ticker)
            valuation_metric_long.append(ticker) if valuation_metric > 0 else valuation_metric_short.append(ticker)
            momentum_long.append(ticker) if momentum > 0 else momentum_short.append(ticker)
        
        for i, portfolio in enumerate([[carry_metric_long, valuation_metric_long, momentum_long], [carry_metric_short, valuation_metric_short, momentum_short]]):
            for sub_portfolio in portfolio:
                for ticker in sub_portfolio:
                    weight[ticker] += ((-1)**i) * self.percentage_traded / len(sub_portfolio)

        # trade execution
        invested: List[str] = [x.Key.Value for x in self.Portfolio if x.Value.Invested]
        for symbol in invested:
            if symbol not in weight:
                self.Liquidate(symbol)

        for symbol, w in weight.items():
            if symbol in data and data[symbol]:
                self.SetHoldings(symbol, w)

class SymbolData():
    def __init__(self, period: int) -> None:
        self.coin_issuance: RollingWindow = RollingWindow[float](period)
        self.transactions: RollingWindow = RollingWindow[float](period)
        self.curr_market_cap: float = 0.
        self.Price: RollingWindow = RollingWindow[float](period)
        
    def update_data(self, current_market_value: float, num_of_transactions: int, coin_issuance: float) -> None:
        self.transactions.Add(num_of_transactions)
        self.curr_market_cap = current_market_value
        self.coin_issuance.Add(coin_issuance)
        
    def update_price(self, price: float) -> None:
        self.Price.Add(price)
        
    def carry_metric(self) -> float:
        seven_days_coin_issuance: List[float] = [x for x in self.coin_issuance]
        # return -1 * (sum(seven_days_coin_issuance) / seven_days_coin_issuance[-1])
        return (sum(seven_days_coin_issuance) / seven_days_coin_issuance[-1])

    def valuation_metric(self) -> float:
        trailing_data: List[float] = [x for x in self.transactions]
        return self.curr_market_cap / np.mean(trailing_data)
    
    def momentum(self) -> float:
        prices: List[float] = [x for x in self.Price]
        return prices[0] / prices[-1] - 1
        
    def is_ready(self) -> bool:
        return self.coin_issuance.IsReady and self.transactions.IsReady and self.Price.IsReady
        
# Crypto network data.
# NOTE: IMPORTANT: Data order must be ascending (datewise)
# Data source: https://coinmetrics.io/community-network-data/
class CryptoNetworkData(PythonData):
    _last_update_date: Dict[Symbol, datetime.date] = {}

    @staticmethod
    def get_last_update_date() -> Dict[Symbol, datetime.date]:
       return CryptoNetworkData._last_update_date

    def GetSource(self, config: SubscriptionDataConfig, date: datetime, isLiveMode: bool) -> SubscriptionDataSource:
        return SubscriptionDataSource(f"data.quantpedia.com/backtesting_data/crypto/{config.Symbol.Value}_network_data.csv", SubscriptionTransportMedium.RemoteFile, FileFormat.Csv)

    # File exmaple:
    # date,AdrActCnt,AdrBal1in100KCnt,AdrBal1in100MCnt,AdrBal1in10BCnt,AdrBal1in10KCnt,AdrBal1in10MCnt,AdrBal1in1BCnt,AdrBal1in1KCnt,AdrBal1in1MCnt,AdrBalCnt,AdrBalNtv0.001Cnt,AdrBalNtv0.01Cnt,AdrBalNtv0.1Cnt,AdrBalNtv100Cnt,AdrBalNtv100KCnt,AdrBalNtv10Cnt,AdrBalNtv10KCnt,AdrBalNtv1Cnt,AdrBalNtv1KCnt,AdrBalNtv1MCnt,AdrBalUSD100Cnt,AdrBalUSD100KCnt,AdrBalUSD10Cnt,AdrBalUSD10KCnt,AdrBalUSD10MCnt,AdrBalUSD1Cnt,AdrBalUSD1KCnt,AdrBalUSD1MCnt,AssetEODCompletionTime,BlkCnt,BlkSizeMeanByte,BlkWghtMean,BlkWghtTot,CapAct1yrUSD,CapMVRVCur,CapMVRVFF,CapMrktCurUSD,CapMrktFFUSD,CapRealUSD,DiffLast,DiffMean,FeeByteMeanNtv,FeeMeanNtv,FeeMeanUSD,FeeMedNtv,FeeMedUSD,FeeTotNtv,FeeTotUSD,FlowInExNtv,FlowInExUSD,FlowOutExNtv,FlowOutExUSD,FlowTfrFromExCnt,HashRate,HashRate30d,IssContNtv,IssContPctAnn,IssContPctDay,IssContUSD,IssTotNtv,IssTotUSD,NDF,NVTAdj,NVTAdj90,NVTAdjFF,NVTAdjFF90,PriceBTC,PriceUSD,ROI1yr,ROI30d,RevAllTimeUSD,RevHashNtv,RevHashRateNtv,RevHashRateUSD,RevHashUSD,RevNtv,RevUSD,SER,SplyAct10yr,SplyAct180d,SplyAct1d,SplyAct1yr,SplyAct2yr,SplyAct30d,SplyAct3yr,SplyAct4yr,SplyAct5yr,SplyAct7d,SplyAct90d,SplyActEver,SplyActPct1yr,SplyAdrBal1in100K,SplyAdrBal1in100M,SplyAdrBal1in10B,SplyAdrBal1in10K,SplyAdrBal1in10M,SplyAdrBal1in1B,SplyAdrBal1in1K,SplyAdrBal1in1M,SplyAdrBalNtv0.001,SplyAdrBalNtv0.01,SplyAdrBalNtv0.1,SplyAdrBalNtv1,SplyAdrBalNtv10,SplyAdrBalNtv100,SplyAdrBalNtv100K,SplyAdrBalNtv10K,SplyAdrBalNtv1K,SplyAdrBalNtv1M,SplyAdrBalUSD1,SplyAdrBalUSD10,SplyAdrBalUSD100,SplyAdrBalUSD100K,SplyAdrBalUSD10K,SplyAdrBalUSD10M,SplyAdrBalUSD1K,SplyAdrBalUSD1M,SplyAdrTop100,SplyAdrTop10Pct,SplyAdrTop1Pct,SplyCur,SplyExpFut10yr,SplyFF,SplyMiner0HopAllNtv,SplyMiner0HopAllUSD,SplyMiner1HopAllNtv,SplyMiner1HopAllUSD,TxCnt,TxCntSec,TxTfrCnt,TxTfrValAdjNtv,TxTfrValAdjUSD,TxTfrValMeanNtv,TxTfrValMeanUSD,TxTfrValMedNtv,TxTfrValMedUSD,VelCur1yr,VtyDayRet180d,VtyDayRet30d
    # 2009-01-09,19,19,19,19,19,19,19,19,19,19,19,19,19,0,0,19,0,19,0,0,0,0,0,0,0,0,0,0,1614334886,19,215,860,16340,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,9.44495122962963E-7,0,950,36500,100,0,950,0,1,0,0,0,0,1,0,0,0,0,11641.53218269,1005828380.584716757433,0,0,950,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,950,950,950,950,950,950,950,950,950,950,950,950,950,0,0,0,0,0,0,0,0,0,0,0,0,0,950,50,50,950,17070250,950,1000,0,1000,0,0,0,0,0,0,0,0,0,0,0,0,0
    def Reader(self, config: SubscriptionDataConfig, line: str, date: datetime, isLiveMode: bool) -> BaseData:
        data: CryptoNetworkData = CryptoNetworkData()
        data.Symbol = config.Symbol

        try:
            cols:str = ['SplyCur', 'CapMrktCurUSD', 'TxTfrValAdjUSD']

            if not line[0].isdigit():
                header_split = line.split(',')
                self.col_index = [header_split.index(x) for x in cols]
                return None

            split = line.split(',')
            
            data.Time = datetime.strptime(split[0], "%Y-%m-%d") + timedelta(days=1)
            for i, col in enumerate(cols):
                data[col] = float(split[self.col_index[i]])

            data.Value = float(split[self.col_index[0]])

            if config.Symbol.Value not in CryptoNetworkData._last_update_date:
                CryptoNetworkData._last_update_date[config.Symbol.Value] = datetime(1,1,1).date()
            if data.Time.date() > CryptoNetworkData._last_update_date[config.Symbol.Value]:
                CryptoNetworkData._last_update_date[config.Symbol.Value] = data.Time.date()
            
        except:
            return None

        return data