Overall Statistics |
Total Trades 130 Average Win 0.22% Average Loss -0.48% Compounding Annual Return 11.400% Drawdown 8.600% Expectancy -0.016 Net Profit 11.400% Sharpe Ratio 0.71 Probabilistic Sharpe Ratio 35.182% Loss Rate 32% Win Rate 68% Profit-Loss Ratio 0.45 Alpha -0.093 Beta 0.901 Annual Standard Deviation 0.12 Annual Variance 0.014 Information Ratio -1.577 Tracking Error 0.071 Treynor Ratio 0.095 Total Fees $130.71 Estimated Strategy Capacity $16000000.00 Lowest Capacity Asset ROL R735QTJ8XC9X |
from AlgorithmImports import * from datetime import timedelta, datetime from QuantConnect.Data.UniverseSelection import * from Selection.FundamentalUniverseSelectionModel import FundamentalUniverseSelectionModel from Execution.ImmediateExecutionModel import ImmediateExecutionModel from Portfolio.EqualWeightingPortfolioConstructionModel import EqualWeightingPortfolioConstructionModel class Third_Attempt(QCAlgorithm): def Initialize(self): self.SetStartDate(2021, 1, 1) # Set Start Date self.SetEndDate(2022, 1, 1) # Set Start Date self.SetCash(100000) # Set Strategy Cash self.AddUniverseSelection(Highperformance()) self.UniverseSettings.Resolution = Resolution.Daily self.AddAlpha(BuyPerformance()) self.SetPortfolioConstruction(PortfolioBuilder()) self.AddRiskManagement(Trailing_SL_TP()) self.SetExecution(ImmediateExecutionModel()) class Highperformance (FundamentalUniverseSelectionModel): def __init__(self): super().__init__( True, None) self.lastMonth = -1 #self.spy = Symbol.Create('SPY', SecurityType.Equity, Market.USA) def SelectCoarse(self, algorithm, coarse): #run the algorithm once a month, return Universe.Unchanged in case we are looking at exactly the same month if algorithm.Time.month == self.lastMonth: return Universe.Unchanged self.lastMonth = algorithm.Time.month sortedByVolume = sorted(coarse, key=lambda x: x.DollarVolume, reverse=True) filteredByFundamentals = [x.Symbol for x in sortedByVolume if x.HasFundamentalData] return filteredByFundamentals def SelectFine(self, algorithm, fine): sorted_high = sorted([x for x in fine if x.MarketCap > 2e9 and 0.5 > x.OperationRatios.AVG5YrsROIC.FiveYears > 0.20 and 50 > x.ValuationRatios.PERatio > 20 and x.AssetClassification.MorningstarSectorCode != MorningstarSectorCode.FinancialServices and x.AssetClassification.MorningstarSectorCode != MorningstarSectorCode.Healthcare], key = lambda x: x.ValuationRatios.PERatio, reverse=True) #fundamental_universe = [x.Symbol for x in sorted_high[:5]] + [self.spy] return [x.Symbol for x in sorted_high[:5]] class BuyPerformance(AlphaModel): def __init__(self): self.lastMonth = -1 self.newAdds = [] def Update(self, algorithm, data): if algorithm.Time.month == self.lastMonth: return [] self.lastMonth = algorithm.Time.month insights = [] #printing the time (for troubleshooting purposes) algorithm.Debug(str(algorithm.Time)) # For the new securities, if they are NOT invested yet and have Data (tradeable) #the algo will add them to the insights # So if the security is already invested, it will still be in the portfolio #no matter if it gets removed from the Universe. for added in self.newAdds: if not algorithm.Securities[added].Invested and algorithm.Securities[added].HasData: algorithm.Debug('Positive Insight : ' + str(added)) insights.append(Insight(added, timedelta(30), InsightType.Price, InsightDirection.Up)) return insights def OnSecuritiesChanged(self, algorithm, changes): # When assets are added to the universe, they will trigger OnSecuritiesChanged() event. #From there, you can initialize any state or history required for the Alpha Model algorithm.Debug('\n -----ALPHA MODEL ----: ' + str(algorithm.Time)) # Securities added into the universe will be added to self.newAdds for security in changes.AddedSecurities: symbol = security.Symbol if symbol not in self.newAdds: algorithm.Debug('added symbol : ' + str(symbol)) self.newAdds.append(symbol) # Securities removed from the universe will be removed from self.newAdds for security in changes.RemovedSecurities: symbol = security.Symbol if symbol in self.newAdds: algorithm.Debug('removed symbol symbol : ' + str(symbol)) self.newAdds.remove(symbol) class PortfolioBuilder(PortfolioConstructionModel): def __init__(self): self.lastMonth = -1 def CreateTargets (self, algorithm, insights): if not algorithm.Time.month == self.lastMonth: total_equity = algorithm.Portfolio.TotalPortfolioValue else: return[] self.lastMonth = algorithm.Time.month algorithm.Debug('\n -----PORTFOLIO CONSTRUCTION ----: ' + str(algorithm.Time)) #Create a list of PortfolioTarget objects from Insights uniques = [] for insight in insights: if not algorithm.Securities[insight.Symbol].Invested: uniques.append(insight.Symbol) # Now i m going to count how many securities are new, and how many securities are already invested coz I have to see #the length of my new portfolio after the new insights get executed #this is considered just because my algo does not sell securities until they hit stop loss invested = [x.Key for x in algorithm.Portfolio if x.Value.Invested] Stocks_In_Portfolio = len(uniques) + len(invested) if Stocks_In_Portfolio != 0: allocation = 0.95 * total_equity / Stocks_In_Portfolio algorithm.Debug('Total Porfolio Value : $' + str(total_equity)) algorithm.Debug('Number of Stocks : ' + str(Stocks_In_Portfolio)) algorithm.Debug('Number of Invested stocks : ' + str(len(invested))) algorithm.Debug('Number of uniques : ' + str(len(uniques))) algorithm.Debug('Individual Security Allocation : $' + str(allocation)) # Now i need to calculate the new amount of shares per security that my portfolio needs to have. For this one i need to breakdown if the security has been invested # if the security is invested, check the existing security allocation and compare it with the allocation value above # if the security has recently been added, then we just need to buy the amoun of shares equivalent to the allocation # ************** target_array = [] for x in algorithm.ActiveSecurities: holding = x.Value symbol = holding.Symbol if holding.Invested: algorithm.Debug('Security (Invested) :' + str(symbol)) algorithm.Debug('Old Amount of Shares :' + str(algorithm.Portfolio[symbol].Quantity)) shares = allocation / algorithm.Securities[symbol].Close algorithm.Debug('New Shares Target :' + str(shares)) target = PortfolioTarget(symbol, shares) elif not holding.Invested: if algorithm.Securities[symbol].Close != 0: shares = allocation / algorithm.Securities[symbol].Close target = PortfolioTarget(symbol, shares) algorithm.Debug('Security (NON Invested) :' + str(symbol)) algorithm.Debug('New Shares Target :' + str(shares)) else: algorithm.Debug('DIVISION BY ZERO!!') target_array.append(target) return target_array class Trailing_SL_TP(RiskManagementModel): def __init__(self): #These two dictionaries will store the symbol and the respective TP and SL self.Take_Profit = dict() self.Stop_Loss = dict() def ManageRisk(self, algorithm, targets): #Risk_targets is the list to be returned at the end #Green is the % value of the take profit (e.g 1.30 is 30% on the upside) #Red is the % value of the Stop Loss (e.g 0.90 is 10% on the downside) risk_targets = list() Green = 1.15 Red = 0.95 for target in targets: symbol = target.Symbol #We just care if the security is invested coz it is the whole point of the risk management model if algorithm.Securities[symbol].Invested: if symbol not in self.Take_Profit: self.Take_Profit[symbol] = Green * algorithm.Portfolio[symbol].AveragePrice self.Stop_Loss[symbol] = Red * algorithm.Portfolio[symbol].AveragePrice if (symbol in self.Take_Profit): if algorithm.Securities[symbol].Price >= self.Take_Profit[symbol]: algorithm.Debug('Security ' + str(symbol) + 'just hit the Take Profit at ' + str(algorithm.Portfolio[symbol].Price)) self.Take_Profit[symbol] = Green * algorithm.Portfolio[symbol].Price self.Stop_Loss[symbol] = Red * algorithm.Portfolio[symbol].Price algorithm.Debug('New TP : ' + str(self.Take_Profit[symbol]) + ' New SL :' + str(self.Stop_Loss[symbol])) if algorithm.Securities[symbol].Price <= self.Stop_Loss[symbol]: algorithm.Debug('Security Liquidated: ' + str(symbol)) risk_targets.append(PortfolioTarget(symbol, 0)) return risk_targets