Overall Statistics |
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio 0 Tracking Error 0 Treynor Ratio 0 Total Fees $0.00 |
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from clr import AddReference AddReference("System") AddReference("QuantConnect.Algorithm") AddReference("QuantConnect.Common") from System import * from QuantConnect import * from QuantConnect.Algorithm import * from QuantConnect.Indicators import * from QuantConnect.Data.Market import TradeBar import decimal as d ### <summary> ### Using rolling windows for efficient storage of historical data; which automatically clears after a period of time. ### </summary> ### <meta name="tag" content="using data" /> ### <meta name="tag" content="history and warm up" /> ### <meta name="tag" content="history" /> ### <meta name="tag" content="warm up" /> ### <meta name="tag" content="indicators" /> ### <meta name="tag" content="rolling windows" /> class RollingWindowAlgorithm(QCAlgorithm): def Initialize(self): '''Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.''' self.SetStartDate(2000,10, 7) #Set Start Date self.SetEndDate(2001,3,11) #Set End Date self.SetCash(100000) #Set Strategy Cash # Find more symbols here: http://quantconnect.com/data self.symbol = "NVDA" self.AddEquity(self.symbol, Resolution.Daily) # Creates a Rolling Window indicator to keep the 2 TradeBar self._bbupwindow = RollingWindow[d.Decimal](20) # For other security types, use QuoteBar self._bbmidwindow = RollingWindow[d.Decimal](20) # For other security types, use QuoteBar self._bblowindow = RollingWindow[d.Decimal](20) # For other security types, use QuoteBar self._keltnerupwindow = RollingWindow[d.Decimal](20) # For other security types, use QuoteBar self._keltnermidwindow = RollingWindow[d.Decimal](20) # For other security types, use QuoteBar self._keltnerlowindow = RollingWindow[d.Decimal](20) # For other security types, use QuoteBar self._bb = self.BB(self.symbol, 20, 1, MovingAverageType.Exponential) self._keltner = self.KCH(self.symbol, 20, d.Decimal(1.51), MovingAverageType.Exponential) #its working NOW !!! def OnData(self, data): '''OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.''' self._bbupwindow.Add(self._bb.UpperBand.Current.Value) self._bbmidwindow.Add(self._bb.MiddleBand.Current.Value) self._bblowindow.Add(self._bb.LowerBand.Current.Value) self._keltnerupwindow.Add(self._keltner.UpperBand.Current.Value) self._keltnermidwindow.Add(self._keltner.MiddleBand.Current.Value) self._keltnerlowindow.Add(self._keltner.LowerBand.Current.Value) if not self._keltner.IsReady: return #self.Log("{0} ... {1} ... {2}".format(self._bb.UpperBand.Current.Value, self._bb.MiddleBand.Current.Value, self._bb.LowerBand.Current.Value)) #self.Log("{0} ... {1} ... {2}".format(self._keltner.UpperBand.Current.Value, self._keltner.MiddleBand.Current.Value, self._keltner.LowerBand.Current.Value)) curbbupperband = self._bbupwindow[0] # Current bar had index zero. prevbbupperband = self._bbupwindow[1] # Past bar has index one. self.Log("bb: {0} -> {1}".format(prevbbupperband, curbbupperband)) curkeltnerlowerband = self._keltnerlowindow[0] # Current SMA had index zero. lastkeltnerlowerband = self._keltnerlowindow[self._keltnerlowindow.Count-1] # Oldest SMA has index of window count minus 1. self.Log("keltner: {0} -> {1}".format(lastkeltnerlowerband, curkeltnerlowerband))