Overall Statistics |
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio 0 Tracking Error 0 Treynor Ratio 0 Total Fees $0.00 Estimated Strategy Capacity $0 |
class PensiveOrangeAnguilline(QCAlgorithm): def Initialize(self): self.SetStartDate(2020, 11, 12) # Set Start Date self.SetCash(100000) # Set Strategy Cash self.AddEquity("SPY", Resolution.Minute) self.AddAlpha(MyAlpha()) class MyAlpha(AlphaModel): symbol_data_by_symbol = {} def Update(self, algorithm, data): for symbol, symbol_data in self.symbol_data_by_symbol.items(): next_close_time = symbol_data.next_close(data.Time, False) algorithm.Quit(f"Next market close for {symbol}: {next_close_time}") return [] def OnSecuritiesChanged(self, algorithm, changes): for security in changes.AddedSecurities: self.symbol_data_by_symbol[security.Symbol] = SymbolData(security) class SymbolData: def __init__(self, security): self.symbol = security.Symbol self.next_close = security.Exchange.Hours.GetNextMarketClose