Overall Statistics |
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio -7.771 Tracking Error 0.05 Treynor Ratio 0 Total Fees $0.00 |
class ModulatedOptimizedCompensator(QCAlgorithm): def Initialize(self): self.SetStartDate(2019, 11, 5) # Set Start Date self.SetEndDate(2019, 11, 30) self.SetCash(100000) # Set Strategy Cash self.AddEquity("SPY", Resolution.Minute) self.sma = self.SMA("SPY", 5, Resolution.Daily) self.sma.Updated += self.OnSMA self.SetWarmUp(timedelta(days=5)) def OnData(self, data): '''OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here. Arguments: data: Slice object keyed by symbol containing the stock data ''' # if not self.Portfolio.Invested: # self.SetHoldings("SPY", 1) def OnSMA(self, sender, updated): if self.sma.IsReady: self.Debug(f"SMA Updated on {self.Time} with value: {self.sma.Current.Value}")