Overall Statistics |
Total Orders 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Start Equity 100000 End Equity 100000 Net Profit 0% Sharpe Ratio 0 Sortino Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio -2.502 Tracking Error 0.095 Treynor Ratio 0 Total Fees $0.00 Estimated Strategy Capacity $0 Lowest Capacity Asset Portfolio Turnover 0% |
#region imports from AlgorithmImports import * import torch #endregion class LiquidUniverseSelection(QCAlgorithm): filtered_by_price = None changes = None def initialize(self): self.set_start_date(2019, 1, 11) self.set_end_date(2019, 7, 1) self.set_cash(100000) self.add_universe(self.coarse_selection_filter) def coarse_selection_filter(self, coarse): sorted_by_dollar_volume = sorted(coarse, key=lambda x: x.dollar_volume, reverse=True) filtered_by_price = [x.symbol for x in sorted_by_dollar_volume if x.price > 10] return filtered_by_price[:8] #1. Create a function on_securities_changed def on_securities_changed(self, changes): #2. Save securities changed as self.changes self.changes = changes #3. Log the changes in the function # self.log(f"on_securities_changed({self.time}:: {changes}") self.log("get here") # self.log(str(torch.cuda.is_available())) # self.debug(f"on_securities_changed({self.time}:: {changes}")