Overall Statistics |
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio -1.222 Tracking Error 0.132 Treynor Ratio 0 Total Fees $0.00 |
import pandas as pd import numpy as np import talib class CalibratedResistanceAtmosphericScrubbers(QCAlgorithm): def Initialize(self): self.SetStartDate(2019, 12, 31) # Set Start Date self.SetEndDate(2020, 1, 5) self.SetCash(100000) # Set Strategy Cash self.AddEquity("SPY", Resolution.Hour) self.closes = np.array([]) self.lookback = 3 self.SetWarmUp(self.lookback * 2) def OnData(self, data): '''OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here. Arguments: data: Slice object keyed by symbol containing the stock data ''' if "SPY" not in data.Bars: return close_ = data["SPY"].Close self.closes = np.append(self.closes, close_)[-self.lookback*2:] if self.IsWarmingUp: return dema = talib.DEMA(self.closes, self.lookback)[-1] self.Log(f'\nDEMA:\n{dema}')