Overall Statistics |
Total Trades 567 Average Win 1.10% Average Loss -0.68% Compounding Annual Return 1.784% Drawdown 18.400% Expectancy 0.068 Net Profit 9.244% Sharpe Ratio 0.166 Probabilistic Sharpe Ratio 1.172% Loss Rate 59% Win Rate 41% Profit-Loss Ratio 1.61 Alpha 0.017 Beta 0.023 Annual Standard Deviation 0.113 Annual Variance 0.013 Information Ratio -0.298 Tracking Error 0.208 Treynor Ratio 0.795 Total Fees $1562.11 Estimated Strategy Capacity $1500000.00 Lowest Capacity Asset GLD T3SKPOF94JFP |
#region imports from AlgorithmImports import * #endregion import numpy as np from math import floor class KalmanFilter: def __init__(self): self.delta1 = 1e-4 self.delta2 = 1e-4 self.delta3 = 1e-4 self.wt1 = self.delta1 / (1 - self.delta1) self.wt2 = self.delta2 / (1 - self.delta2) self.wt3 = self.delta3 / (1 - self.delta3) self.wt = np.array([[self.wt1, 0, 0], [0, self.wt2, 0], [0, 0, self.wt3]]) self.vt = 1e-3 self.theta = np.zeros(3) self.P = np.zeros((3, 3)) self.R = None self.qty = 2000 def update(self, price_one, price_two, price_three): # Create the observation matrix of the latest prices # of TLT and the intercept value (1.0) F = np.asarray([price_one, price_two, 1.0]).reshape((1, 3)) y = price_three # The prior value of the states \theta_t is # distributed as a multivariate Gaussian with # mean a_t and variance-covariance R_t if self.R is not None: self.R = self.C + self.wt else: self.R = np.zeros((3, 3)) # Calculate the Kalman Filter update # ---------------------------------- # Calculate prediction of new observation # as well as forecast error of that prediction yhat = F.dot(self.theta) et = y - yhat # Q_t is the variance of the prediction of # observations and hence \sqrt{Q_t} is the # standard deviation of the predictions Qt = F.dot(self.R).dot(F.T) + self.vt sqrt_Qt = np.sqrt(Qt) # The posterior value of the states \theta_t is # distributed as a multivariate Gaussian with mean # m_t and variance-covariance C_t At = self.R.dot(F.T) / Qt self.theta = self.theta + At.flatten() * et self.C = self.R - At * F.dot(self.R) hedge_quantity = int(floor(self.qty*self.theta[0])) return et, sqrt_Qt, hedge_quantity
#region imports from AlgorithmImports import * #endregion import numpy as np from math import floor from KalmanFilter import KalmanFilter class VerticalParticleInterceptor(QCAlgorithm): def Initialize(self): self.SetStartDate(2018, 1, 1) # Set Start Date self.SetEndDate(2023, 1, 1) # Set End Date self.SetCash(100000) # Set Strategy Cash self.SetBrokerageModel(AlphaStreamsBrokerageModel()) s1 = "SHY" s2 = "GLD" s3 = "AAPL" self.symbols = [self.AddEquity(x, Resolution.Minute).Symbol for x in [s1, s2, s3]] self.kf = KalmanFilter() self.invested = None self.Schedule.On(self.DateRules.EveryDay(s1), self.TimeRules.BeforeMarketClose(s1, 5), self.UpdateAndTrade) def UpdateAndTrade(self): # Get recent price and holdings information sa = self.CurrentSlice[self.symbols[0]].Close sb = self.CurrentSlice[self.symbols[1]].Close sc = self.CurrentSlice[self.symbols[2]].Close holdings = self.Portfolio[self.symbols[0]] forecast_error, prediction_std_dev, hedge_quantity = self.kf.update(sa, sb, sc) if not holdings.Invested: # Long the spread if forecast_error < -prediction_std_dev: insights = Insight.Group([Insight(self.symbols[0], timedelta(1), InsightType.Price, InsightDirection.Down), Insight(self.symbols[1], timedelta(1), InsightType.Price, InsightDirection.Up), Insight(self.symbols[2], timedelta(1), InsightType.Price, InsightDirection.Up)]) self.EmitInsights(insights) self.MarketOrder(self.symbols[2], self.kf.qty * 0.3) self.MarketOrder(self.symbols[1], self.kf.qty * 0.3) self.MarketOrder(self.symbols[0], -hedge_quantity * 0.3) # Short the spread elif forecast_error > prediction_std_dev: insights = Insight.Group([Insight(self.symbols[0], timedelta(1), InsightType.Price, InsightDirection.Up), Insight(self.symbols[1], timedelta(1), InsightType.Price, InsightDirection.Down), Insight(self.symbols[2], timedelta(1), InsightType.Price, InsightDirection.Down)]) self.EmitInsights(insights) self.MarketOrder(self.symbols[2], -self.kf.qty * 0.3) self.MarketOrder(self.symbols[1], -self.kf.qty * 0.3) self.MarketOrder(self.symbols[0], hedge_quantity * 0.3) if holdings.Invested: # Close long position if holdings.IsShort and (forecast_error >= -prediction_std_dev): insights = Insight.Group([Insight(self.symbols[0], timedelta(1), InsightType.Price, InsightDirection.Flat), Insight(self.symbols[1], timedelta(1), InsightType.Price, InsightDirection.Flat), Insight(self.symbols[2], timedelta(1), InsightType.Price, InsightDirection.Flat)]) self.EmitInsights(insights) self.Liquidate() self.invested = None # Close short position elif holdings.IsLong and (forecast_error <= prediction_std_dev): insights = Insight.Group([Insight(self.symbols[0], timedelta(1), InsightType.Price, InsightDirection.Flat), Insight(self.symbols[1], timedelta(1), InsightType.Price, InsightDirection.Flat), Insight(self.symbols[2], timedelta(1), InsightType.Price, InsightDirection.Flat)]) self.EmitInsights(insights) self.Liquidate() self.invested = None