Overall Statistics
Total Trades
76
Average Win
94.70%
Average Loss
-4.49%
Compounding Annual Return
18250.522%
Drawdown
54.100%
Expectancy
8.208
Net Profit
9015.099%
Sharpe Ratio
35189.462
Probabilistic Sharpe Ratio
83.773%
Loss Rate
58%
Win Rate
42%
Profit-Loss Ratio
21.10
Alpha
320158.695
Beta
-1.171
Annual Standard Deviation
9.098
Annual Variance
82.776
Information Ratio
35115.425
Tracking Error
9.117
Treynor Ratio
-273325.367
Total Fees
$8880.55
from System.Collections.Generic import List
from QuantConnect.Data.UniverseSelection import *
import operator
from math import ceil,floor
from scipy import stats
import numpy as np
from datetime import timedelta

class Test(QCAlgorithm):
    
    def Initialize(self):

        ''' Backtesting Parameters '''
        self.SetStartDate(2020, 1, 1)  
        # self.SetEndDate(2014, 1, 1)
        self.SetCash(30000)            

        ''' Universe Settings '''
        self.benchmark = Symbol.Create("SPY", SecurityType.Equity, Market.USA)
        self.UniverseSettings.Resolution = Resolution.Minute        
        self.UniverseSettings.DataNormalizationMode = DataNormalizationMode.Raw
        self.AddUniverse(self.CoarseSelectionFunction, self.FineSelectionFunction)
        
        ''' Minor Parameters '''
        self.month     = -1
        self.leverage  = 2
        self.leniency  = .95
        
        ''' Parameters with meaning '''
        self.volumeMin          = 1000000 # Ensures we are looking at liquid stocks
        self.piotroskiMin       = 5 # The higher the better (6, 7, 8, 9) leaves us with the top 40% best quality companies
        self.minuteBeforeEOD    = 60 # Ensure we have enough time to sell before the end of the day
        self.priceMin           = 0  # Ensures we do not get the stocks with extremely high risk (Penny stocks)
        self.sectorHistory      = 21 # Performance last iteration/month
        self.stockHistory       = 21 # Performance last iteration/month
        
        ''' Parameters without meaning '''
        self.monthlyStocks      = 6
        
        ''' Schedule Settings '''
        self.AddEquity("SPY", Resolution.Minute)
        self.SetBenchmark("SPY")
        self.Schedule.On(self.DateRules.EveryDay("SPY"), self.TimeRules.AfterMarketOpen("SPY"), Action(self.Daily))
        self.Schedule.On(self.DateRules.MonthEnd("SPY"), self.TimeRules.BeforeMarketClose("SPY", self.minuteBeforeEOD), self.Liquidate)
        
        ''' Data Structures  '''
        self.symbols, self.topSectors,self.sectorPerformances = [], [], {}
        
        ''' Sectors '''
        self.sectorStocks = {"XLV": MorningstarSectorCode.Healthcare,
                            "XLK": MorningstarSectorCode.Technology,
                            "XLI": MorningstarSectorCode.Industrials,
                            "XLU": MorningstarSectorCode.Utilities,
                            "XLF": MorningstarSectorCode.FinancialServices,
                            "XLP": MorningstarSectorCode.ConsumerDefensive,
                            "XLY": MorningstarSectorCode.ConsumerCyclical,
                            "XLB": MorningstarSectorCode.BasicMaterials,
                            "XLE": MorningstarSectorCode.Energy,
                            "PSR": MorningstarSectorCode.RealEstate,
                            "IYZ": MorningstarSectorCode.CommunicationServices
        }
        
    def CoarseSelectionFunction(self, coarse):
        if self.month != self.Time.month:
            self.month = self.Time.month    
            sortedCoarse = [x for x in coarse 
                            if x.HasFundamentalData
                            and x.Volume > self.volumeMin
                            and x.Price > self.priceMin]

            self.topSectors = []
            self.sectorPerformances = {}
            for x in self.sectorStocks:
                key = Symbol.Create(x, SecurityType.Equity, Market.USA)
                history = self.History(key, self.sectorHistory, Resolution.Daily) # Parameter (1)
                # self.Debug(history)
                if history.empty: continue
                first     = history.head(1)['close'].iloc[0]
                last      = history.tail(1)['open'].iloc[0]
                
                self.sectorPerformances[self.sectorStocks[x]] = (last-first)/last
                
            self.topSectors = [x for x in self.sectorPerformances if self.sectorPerformances[x] > 0]
            return [x.Symbol for x in sortedCoarse]
            
        else: return Universe.Unchanged

    def FineSelectionFunction(self, fine):
            filteredFine = [x for x in fine if x.FinancialStatements.IncomeStatement.NetIncome.TwelveMonths 
                                            and x.FinancialStatements.CashFlowStatement.CashFlowFromContinuingOperatingActivities.TwelveMonths 
                                            and x.OperationRatios.ROA.ThreeMonths 
                                            and x.OperationRatios.ROA.OneYear 
                                            and x.FinancialStatements.BalanceSheet.ShareIssued.ThreeMonths 
                                            and x.FinancialStatements.BalanceSheet.ShareIssued.TwelveMonths 
                                            and x.OperationRatios.GrossMargin.ThreeMonths 
                                            and x.OperationRatios.GrossMargin.OneYear 
                                            and x.OperationRatios.LongTermDebtEquityRatio.ThreeMonths 
                                            and x.OperationRatios.LongTermDebtEquityRatio.OneYear  
                                            and x.OperationRatios.CurrentRatio.ThreeMonths 
                                            and x.OperationRatios.CurrentRatio.OneYear  
                                            and x.OperationRatios.AssetsTurnover.ThreeMonths 
                                            and x.OperationRatios.AssetsTurnover.OneYear  
                                            and x.ValuationRatios.NormalizedPERatio
                                            and x.EarningReports.BasicAverageShares.ThreeMonths 
                                            and x.EarningReports.BasicEPS.TwelveMonths
                                            and x.ValuationRatios.PayoutRatio > 0]
                                    
            sortedByFScore = [x for x in filteredFine if FScore(x.FinancialStatements.IncomeStatement.NetIncome.TwelveMonths,
                                                                x.FinancialStatements.CashFlowStatement.CashFlowFromContinuingOperatingActivities.TwelveMonths,
                                                                x.OperationRatios.ROA.ThreeMonths, 
                                                                x.OperationRatios.ROA.OneYear,
                                                                x.FinancialStatements.BalanceSheet.ShareIssued.ThreeMonths, 
                                                                x.FinancialStatements.BalanceSheet.ShareIssued.TwelveMonths,  
                                                                x.OperationRatios.GrossMargin.ThreeMonths, 
                                                                x.OperationRatios.GrossMargin.OneYear,
                                                                x.OperationRatios.LongTermDebtEquityRatio.ThreeMonths, 
                                                                x.OperationRatios.LongTermDebtEquityRatio.OneYear,
                                                                x.OperationRatios.CurrentRatio.ThreeMonths, 
                                                                x.OperationRatios.CurrentRatio.OneYear,
                                                                x.OperationRatios.AssetsTurnover.ThreeMonths, 
                                                                x.OperationRatios.AssetsTurnover.OneYear).ObjectiveScore() > self.piotroskiMin 
                                                                ]
                                                        
            sortedBySector = [x for x in sortedByFScore if x.AssetClassification.MorningstarSectorCode in self.topSectors]
 
            self.symbols = [i.Symbol for i in sortedBySector]
            return self.symbols
            
    def Daily(self):    
        if self.month == self.Time.month and not self.Portfolio.Invested: self.Rebalance()    
            
    def Rebalance(self):    
        filterByPrice = [x for x in self.symbols if self.ActiveSecurities[x].Price > 0]    
        sortByPrice = sorted(filterByPrice, key=lambda x: (self.ActiveSecurities[x].Price), reverse = False)    
            
        buyingPower = (self.Portfolio.MarginRemaining / (self.monthlyStocks/self.leverage)) * self.leniency
        if buyingPower > 0:    
            for symbol in sortByPrice:    
                if self.Portfolio.MarginRemaining >= buyingPower:    
                    
                    history = self.History(symbol, self.stockHistory, Resolution.Daily) 
                    if history.empty: return
                    pOpen  = history.head(1)['open'].iloc[0]
                    pClose = history.tail(1)['close'].iloc[0]

                    if pClose > pOpen:
                        orderSize = buyingPower / self.Securities[symbol].Price    
                        self.MarketOrder(symbol, orderSize)    
                        
        else: self.Log("Insufficient Buying Power: " + str(self.Portfolio.MarginRemaining))    
            
class FScore(object):    
        
    def __init__(self,     
                 netincome,     
                 operating_cashflow,     
                 roa_current,    
                 roa_past,     
                 issued_current,     
                 issued_past,     
                 grossm_current,     
                 grossm_past,    
                 longterm_current,     
                 longterm_past,     
                 curratio_current,     
                 curratio_past,    
                 assetturn_current,     
                 assetturn_past):    
                         
        self.netincome = netincome    
        self.operating_cashflow = operating_cashflow    
        self.roa_current = roa_current    
        self.roa_past = roa_past    
        self.issued_current = issued_current    
        self.issued_past = issued_past    
        self.grossm_current = grossm_current    
        self.grossm_past = grossm_past    
        self.longterm_current = longterm_current    
        self.longterm_past = longterm_past    
        self.curratio_current = curratio_current    
        self.curratio_past = curratio_past    
        self.assetturn_current = assetturn_current    
        self.assetturn_past = assetturn_past    
        
    def ObjectiveScore(self):    
        
        ''' The Piotroski score is broken down into profitability; leverage, liquidity, and source of funds; and operating efficiency categories, as follows: '''    
        fscore = 0    
        
        ''' Profitability Criteria '''    
        fscore += np.where(self.netincome > 0,                            1, 0) # Positive Net Income (X Months?)    
        fscore += np.where(self.operating_cashflow > 0,                   1, 0) # Positive Operating Cash Flow    
        fscore += np.where(self.roa_current > self.roa_past,              1, 0) # Positive Return on Assets    
        fscore += np.where(self.operating_cashflow > self.roa_current,    1, 0) # Cash flow from operations being greater than net income (quality of earnings)    
            
        ''' Leverage, Liquidity, and Source of Dunds Criteria '''    
        fscore += np.where(self.longterm_current <= self.longterm_past,   1, 0) # Lower ratio of long term debt in the current period, compared to the previous year (decreased leverage)     
        fscore += np.where(self.curratio_current >= self.curratio_past,   1, 0) # Higher current ratio this year compared to the previous year (more liquidity)    
        fscore += np.where(self.issued_current <= self.issued_past,       1, 0) # No new shares were issued in the last year    
            
        ''' Operating Efficiency Criteria '''    
        # A higher gross margin compared to the previous year    
        fscore += np.where(self.grossm_current >= self.grossm_past,       1, 0) # A higher gross margin compared to the previous year     
        fscore += np.where(self.assetturn_current >= self.assetturn_past, 1, 0) # A higher asset turnover ratio compared to the previous year (1 point)    
            
        return fscore