Overall Statistics |
Total Orders 405 Average Win 7.51% Average Loss -1.73% Compounding Annual Return 118.402% Drawdown 32.900% Expectancy 1.543 Start Equity 100000.00 End Equity 4998889.18 Net Profit 4898.889% Sharpe Ratio 2.544 Sortino Ratio 3.322 Probabilistic Sharpe Ratio 99.493% Loss Rate 52% Win Rate 48% Profit-Loss Ratio 4.34 Alpha 0.703 Beta 0.704 Annual Standard Deviation 0.304 Annual Variance 0.093 Information Ratio 2.378 Tracking Error 0.283 Treynor Ratio 1.099 Total Fees $8148.44 Estimated Strategy Capacity $17000000.00 Lowest Capacity Asset TASR S5BXFVIKPX7P Portfolio Turnover 3.62% |
from AlgorithmImports import * class TopCryptoStrategy(QCAlgorithm): def Initialize(self): self.SetStartDate(2019, 1,1) # Set Start Date self.SetEndDate(2024, 1, 1) self.SetCash(100000) # Set Strategy Cash # Define the symbols self.crypto_symbols = ["BTCUSD", "ETHUSD"] self.stock_symbols = ["AAPL","META", "NVDA","TSM","INTU","BX" "TSLA", "PWR", "NUE","ZM", "NIO", "BRKR", "AXON", "ODFL", "PINS", "EFX","BLDR","ENPH"] self.fx_symbols = ["GBPUSD"] # Add GBPUSD self.SetBenchmark("SPY") # Attempt to add each cryptocurrency, stock, and FX pair self.active_symbols = [] for symbol in self.crypto_symbols: try: self.AddCrypto(symbol, Resolution.Daily) self.active_symbols.append(symbol) except Exception as e: self.Debug(f"Unable to add symbol: {symbol}. Exception: {e}") for symbol in self.stock_symbols: try: self.AddEquity(symbol, Resolution.Daily) self.active_symbols.append(symbol) except Exception as e: self.Debug(f"Unable to add symbol: {symbol}. Exception: {e}") for symbol in self.fx_symbols: # Add FX symbols try: self.AddForex(symbol, Resolution.Daily) self.active_symbols.append(symbol) except Exception as e: self.Debug(f"Unable to add symbol: {symbol}. Exception: {e}") # Define the technical indicators self.supertrend1 = {} self.supertrend2 = {} self.rsi = {} self.ema100 = {} self.weekly_twap = {} self.entry_prices = {} for symbol in self.active_symbols: self.supertrend1[symbol] = self.STR(symbol, 10, 2.5, MovingAverageType.Wilders) self.supertrend2[symbol] = self.STR(symbol, 10, 3, MovingAverageType.Wilders) self.rsi[symbol] = self.RSI(symbol, 10, MovingAverageType.Wilders, Resolution.Daily) self.ema100[symbol] = self.EMA(symbol, 100, Resolution.Daily) self.weekly_twap[symbol] = self.WeeklyTwap(symbol, 5) self.entry_prices[symbol] = None self.SetWarmUp(100, Resolution.Daily) # Warm up period for 100 days def WeeklyTwap(self, symbol, num_weeks): twap = self.SMA(symbol, num_weeks * 5, Resolution.Daily) # Assuming 5 trading days per week return twap def OnData(self, data): if self.IsWarmingUp: return for symbol in self.active_symbols: if not data.Bars.ContainsKey(symbol): continue bar = data.Bars[symbol] # Get current values current_price = bar.Close supertrend1 = self.supertrend1[symbol].Current.Value supertrend2 = self.supertrend2[symbol].Current.Value rsi = self.rsi[symbol].Current.Value ema100 = self.ema100[symbol].Current.Value weekly_twap = self.weekly_twap[symbol].Current.Value # Define factor based on asset type factor = 1.2 if symbol in self.crypto_symbols else 1.04 factor = 1 if symbol in self.fx_symbols else factor # Set factor to 1 for FX pairs # Entry condition if self.entry_prices[symbol] is None: if (current_price > supertrend1 and current_price > supertrend2 and rsi > 50 and current_price > ema100 and current_price < factor * weekly_twap): # Use appropriate factor self.Debug(f"{symbol}: Supertrend1={supertrend1}, Supertrend2={supertrend2}, RSI={rsi}, EMA100={ema100}, Weekly TWAP={weekly_twap}") self.SetHoldings(symbol, 0.2) self.entry_prices[symbol] = current_price # Exit condition elif current_price < supertrend1 and current_price < supertrend2: self.Liquidate(symbol) self.entry_prices[symbol] = None