Overall Statistics |
Total Orders 75 Average Win 5.40% Average Loss -1.54% Compounding Annual Return 8.139% Drawdown 17.500% Expectancy 0.704 Start Equity 1000000 End Equity 1446722.72 Net Profit 44.672% Sharpe Ratio 0.35 Sortino Ratio 0.313 Probabilistic Sharpe Ratio 13.936% Loss Rate 62% Win Rate 38% Profit-Loss Ratio 3.50 Alpha 0.006 Beta 0.337 Annual Standard Deviation 0.103 Annual Variance 0.011 Information Ratio -0.362 Tracking Error 0.144 Treynor Ratio 0.106 Total Fees $1187.39 Estimated Strategy Capacity $1200000000.00 Lowest Capacity Asset SPY R735QTJ8XC9X Portfolio Turnover 4.35% |
# region imports from AlgorithmImports import * # endregion class QuantLeague(QCAlgorithm): def initialize(self): self.set_start_date(2020, 1, 1) self.set_cash(1000000) self.symbol = self.add_equity("SPY", Resolution.Daily).Symbol self.fast_moving_average = self.sma(self.symbol, 50, Resolution.Daily) self.last_action = None def on_data(self, data): if self.IsWarmingUp: return # Skip during warm-up # Ensure we have enough data to calculate the moving average if not self.fast_moving_average.is_ready: return if self.symbol in data and data[self.symbol] is not None: price = data[self.symbol].close # Buy if the price is above the moving average if price > self.fast_moving_average.current.value: if not self.portfolio.invested or self.last_action == "Sell": self.set_holdings(self.symbol, 1) self.last_action = "Buy" # Sell if the price is below the moving average elif price < self.fast_moving_average.current.value: if self.portfolio.invested and self.last_action == "Buy": self.liquidate(self.symbol) self.last_action = "Sell"