Overall Statistics |
Total Orders 3835 Average Win 0.23% Average Loss -0.30% Compounding Annual Return 12.925% Drawdown 37.000% Expectancy 0.144 Start Equity 100000 End Equity 212465.23 Net Profit 112.465% Sharpe Ratio 0.434 Sortino Ratio 0.476 Probabilistic Sharpe Ratio 7.568% Loss Rate 35% Win Rate 65% Profit-Loss Ratio 0.76 Alpha 0.019 Beta 0.831 Annual Standard Deviation 0.199 Annual Variance 0.04 Information Ratio 0.037 Tracking Error 0.145 Treynor Ratio 0.104 Total Fees $4597.53 Estimated Strategy Capacity $3400000.00 Lowest Capacity Asset SAI TMRWYKAE84TH Portfolio Turnover 7.24% |
from AlgorithmImports import * class conservative_reblancing(AlphaModel): def __init__(self, benchmark, v_lookback, m_lookback): self.benchmark = benchmark self.v_lookback = v_lookback self.m_lookback = m_lookback self.symbols = [] self.month = -1 def on_securities_changed(self, algorithm, changes): for added in changes.added_securities: self.symbols.append(added.symbol) # algorithm.Log(f"Added {added.symbol} to universe") for removed in changes.removed_securities: symbol = removed.symbol if symbol in self.symbols: self.symbols.remove(symbol) # algorithm.Log(f"Removed {symbol} from universe") def update(self, algorithm, data): # algorithm.Debug(f"Update method called for month {algorithm.time.month}, universe size: {len(self.symbols)}") if algorithm.time.month == self.month: return [] self.month = algorithm.time.month # Initialize the data alphas = dict() # Fetch indicator data for symbol in self.symbols: # Create the indicators roc = algorithm.roc(symbol, 1, Resolution.Daily) std = algorithm.std(symbol, self.v_lookback, Resolution.DAILY) momp = algorithm.momp(symbol, self.m_lookback, Resolution.DAILY) # Get historical data for warm-up history = algorithm.History(symbol, max(self.v_lookback, self.m_lookback) + 10, Resolution.DAILY) # algorithm.Log(f"History size for {symbol}: {len(history)}") # Warm up the indicators for idx, row in history.loc[symbol].iterrows(): roc.Update(idx, row["close"]) std.Update(idx, roc.current.value) momp.Update(idx, row["close"]) # Compute the rank value alphas[symbol] = max(momp.Current.Value / std.Current.Value, 0) # algorithm.Log(f"Processing symbol {symbol} with alpha value: {alphas[symbol]}") # Rank the symbol by the value of mom/vol selected = sorted(alphas.items(), key=lambda x: x[1], reverse=True)[:5] selected_symbols = [x[0] for x in selected] # algorithm.Debug(f"Selected symbols at {algorithm.Time}: {', '.join([str(symbol) for symbol in selected_symbols])}") return [ Insight.price(symbol, Expiry.END_OF_MONTH, InsightDirection.UP) for symbol in selected_symbols ]
#region imports from AlgorithmImports import * from universe import * from alpha import * #endregion class ConservativeApgorithm(QCAlgorithm): def initialize(self): self.set_start_date(2018, 1, 1) self.set_end_date(2024, 5, 1) self.set_cash(100000) # Set number days to trace back v_lookback = self.get_parameter("v_lookback", 36) m_lookback = self.get_parameter("m_lookback", 12) self.set_brokerage_model(BrokerageName.INTERACTIVE_BROKERS_BROKERAGE, AccountType.MARGIN) # SPY 500 companies spy = self.add_equity("SPY", resolution = self.universe_settings.resolution, data_normalization_mode = self.universe_settings.data_normalization_mode).symbol self.set_benchmark(spy) # # DOW 30 Companies # dia = self.add_equity("DIA", # resolution = self.universe_settings.resolution, # data_normalization_mode = self.universe_settings.data_normalization_mode).symbol # self.set_benchmark(dia) self.set_universe_selection(etf_constituents_universe(spy, self.universe_settings)) self.add_alpha(conservative_reblancing(spy, v_lookback, m_lookback)) self.Settings.RebalancePortfolioOnInsightChanges = False self.Settings.RebalancePortfolioOnSecurityChanges = False self.set_portfolio_construction(EqualWeightingPortfolioConstructionModel()) self.set_risk_management(NullRiskManagementModel()) self.set_execution(ImmediateExecutionModel())
from AlgorithmImports import * class etf_constituents_universe(ETFConstituentsUniverseSelectionModel): def __init__(self, benchmark, universe_settings: UniverseSettings = None) -> None: super().__init__(benchmark, universe_settings, self.etf_constituents_filter) def etf_constituents_filter(self, constituents): return [c.symbol for c in constituents]