Overall Statistics
Total Trades
842
Average Win
0.29%
Average Loss
-0.19%
Compounding Annual Return
8.604%
Drawdown
12.600%
Expectancy
1.291
Net Profit
227.421%
Sharpe Ratio
1.235
Probabilistic Sharpe Ratio
78.823%
Loss Rate
9%
Win Rate
91%
Profit-Loss Ratio
1.53
Alpha
0.073
Beta
-0.012
Annual Standard Deviation
0.058
Annual Variance
0.003
Information Ratio
-0.069
Tracking Error
0.192
Treynor Ratio
-6.097
Total Fees
$846.44
import pandas as pd
import numpy as np
from scipy.optimize import minimize

class PortfolioOptimizer:
    
    '''
    Description:
        Implementation of a custom optimizer that calculates the weights for each asset to optimize a given objective function
    Details:
        Optimization can be:
            - Equal Weighting
            - Maximize Portfolio Return
            - Minimize Portfolio Standard Deviation
            - Mean-Variance (minimize Standard Deviation given a target return)
            - Maximize Portfolio Sharpe Ratio
            - Maximize Portfolio Sortino Ratio
            - Risk Parity Portfolio
        Constraints:
            - Weights must be between some given boundaries
            - Weights must sum to 1
    '''
    
    def __init__(self, 
                 minWeight = 0,
                 maxWeight = 1):
                     
        '''
        Description:
            Initialize the CustomPortfolioOptimizer
        Args:
            minWeight(float): The lower bound on portfolio weights
            maxWeight(float): The upper bound on portfolio weights
        '''
        
        self.minWeight = minWeight
        self.maxWeight = maxWeight

    def Optimize(self, objFunction, dailyReturnsDf, targetReturn = None):
        
        '''
        Description:
            Perform portfolio optimization given a series of returns
        Args:
            objFunction: The objective function to optimize (equalWeighting, maxReturn, minVariance, meanVariance, maxSharpe, maxSortino, riskParity)
            dailyReturnsDf: DataFrame of historical daily arithmetic returns
        Returns:
            Array of double with the portfolio weights (size: K x 1)
        '''
        
        # initial weights: equally weighted
        size = dailyReturnsDf.columns.size # K x 1
        self.initWeights = np.array(size * [1. / size])

        # get sample covariance matrix
        covariance = dailyReturnsDf.cov()
        # get the sample covariance matrix of only negative returns for sortino ratio
        negativeReturnsDf = dailyReturnsDf[dailyReturnsDf < 0]
        covarianceNegativeReturns = negativeReturnsDf.cov()
        
        if objFunction == 'equalWeighting':
            return self.initWeights
        
        bounds = tuple((self.minWeight, self.maxWeight) for x in range(size))
        constraints = [{'type': 'eq', 'fun': lambda x: np.sum(x) - 1.0}]
        
        if objFunction == 'meanVariance':
            # if no target return is provided, use the resulting from equal weighting
            if targetReturn is None:
                targetReturn = self.CalculateAnnualizedPortfolioReturn(dailyReturnsDf, self.initWeights)
            constraints.append( {'type': 'eq', 'fun': lambda weights:
                                self.CalculateAnnualizedPortfolioReturn(dailyReturnsDf, weights) - targetReturn} )

        opt = minimize(lambda weights: self.ObjectiveFunction(objFunction, dailyReturnsDf,
                                                                covariance, covarianceNegativeReturns,
                                                                weights),
                        x0 = self.initWeights,
                        bounds = bounds,
                        constraints = constraints,
                        method = 'SLSQP')

        return opt['x']

    def ObjectiveFunction(self, objFunction, dailyReturnsDf, covariance, covarianceNegativeReturns, weights):
        
        '''
        Description:
            Compute the objective function
        Args:
            objFunction: The objective function to optimize (equalWeighting, maxReturn, minVariance, meanVariance,
                                                                maxSharpe, maxSortino, riskParity)
            dailyReturnsDf: DataFrame of historical daily returns
            covariance: Sample covariance
            covarianceNegativeReturns: Sample covariance matrix of only negative returns
            weights: Portfolio weights
        '''
    
        if objFunction == 'maxReturn':
            f = self.CalculateAnnualizedPortfolioReturn(dailyReturnsDf, weights)
            return -f # convert to negative to be minimized
        elif objFunction == 'minVariance':
            f = self.CalculateAnnualizedPortfolioStd(covariance, weights)
            return f
        elif objFunction == 'meanVariance':
            f = self.CalculateAnnualizedPortfolioStd(covariance, weights)
            return f
        elif objFunction == 'maxSharpe':
            f = self.CalculateAnnualizedPortfolioSharpeRatio(dailyReturnsDf, covariance, weights)
            return -f # convert to negative to be minimized
        elif objFunction == 'maxSortino':
            f = self.CalculateAnnualizedPortfolioSortinoRatio(dailyReturnsDf, covarianceNegativeReturns, weights)
            return -f # convert to negative to be minimized
        elif objFunction == 'riskParity':
            f = self.CalculateRiskParityFunction(covariance, weights)
            return f
        else:
            raise ValueError(f'PortfolioOptimizer.ObjectiveFunction: objFunction input has to be one of equalWeighting,'
             + ' maxReturn, minVariance, meanVariance, maxSharpe, maxSortino or riskParity')
        
    def CalculateAnnualizedPortfolioReturn(self, dailyReturnsDf, weights):
        
        annualizedPortfolioReturns = np.sum( ((1 + dailyReturnsDf.mean())**252 - 1) * weights )
        
        return annualizedPortfolioReturns
            
    def CalculateAnnualizedPortfolioStd(self, covariance, weights):
        
        annualizedPortfolioStd = np.sqrt( np.dot(weights.T, np.dot(covariance * 252, weights)) )
        
        if annualizedPortfolioStd == 0:
            raise ValueError(f'PortfolioOptimizer.CalculateAnnualizedPortfolioStd: annualizedPortfolioStd cannot be zero. Weights: {weights}')
            
        return annualizedPortfolioStd
    
    def CalculateAnnualizedPortfolioNegativeStd(self, covarianceNegativeReturns, weights):
    
        annualizedPortfolioNegativeStd = np.sqrt( np.dot(weights.T, np.dot(covarianceNegativeReturns * 252, weights)) )        
    
        if annualizedPortfolioNegativeStd == 0:
            raise ValueError(f'PortfolioOptimizer.CalculateAnnualizedPortfolioNegativeStd: annualizedPortfolioNegativeStd cannot be zero. Weights: {weights}')
        
        return annualizedPortfolioNegativeStd
        
    def CalculateAnnualizedPortfolioSharpeRatio(self, dailyReturnsDf, covariance, weights):
        
        annualizedPortfolioReturn = self.CalculateAnnualizedPortfolioReturn(dailyReturnsDf, weights)
        annualizedPortfolioStd = self.CalculateAnnualizedPortfolioStd(covariance, weights)
        annualizedPortfolioSharpeRatio = annualizedPortfolioReturn / annualizedPortfolioStd
            
        return annualizedPortfolioSharpeRatio
    
    def CalculateAnnualizedPortfolioSortinoRatio(self, dailyReturnsDf, covarianceNegativeReturns, weights):
        
        annualizedPortfolioReturn = self.CalculateAnnualizedPortfolioReturn(dailyReturnsDf, weights)
        annualizedPortfolioNegativeStd = self.CalculateAnnualizedPortfolioNegativeStd(covarianceNegativeReturns, weights)
        annualizedPortfolioSortinoRatio = annualizedPortfolioReturn / annualizedPortfolioNegativeStd
            
        return annualizedPortfolioSortinoRatio
    
    def CalculateRiskParityFunction(self, covariance, weights):
        
        ''' Spinu formulation for risk parity portfolio '''
        
        assetsRiskBudget = self.initWeights
        portfolioVolatility = self.CalculateAnnualizedPortfolioStd(covariance, weights)
        
        x = weights / portfolioVolatility
        riskParity = (np.dot(x.T, np.dot(covariance, x)) / 2) - np.dot(assetsRiskBudget.T, np.log(x))
            
        return riskParity
from OptimalWeightsAlphaCreation import OptimalWeightsAlphaCreationModel

class PortfolioOptimizationSystem(QCAlgorithmFramework):

    def Initialize(self):
        
        ### user-defined inputs ---------------------------------------------------------------------------------------------------
        
        self.SetStartDate(2006, 1, 1)  # Set Start Date
        #self.SetEndDate(2020, 5, 1)     # Set End Date
        self.SetCash(100000)            # Set Strategy Cash
        
        # UNIVERSE -------------------------------------------------------------
        
        # select tickers
        tickers = ['IEF', 'TLT', 'GLD', 'SPY', 'QQQ']
        
        # ALPHA ----------------------------------------------------------------
        
        # select the objective function to optimize the portfolio weights
        # options are: equalWeighting, maxReturn, minVariance, meanVariance, maxSharpe, maxSortino, riskParity
        objectiveFunction = 'riskParity'
        
        # select number of lookback days for optimization
        lookbackOptimization = 63
        
        # select the logic for rebalancing period
        # date rules (for the first trading day of period): Expiry.EndOfDay, Expiry.EndOfWeek, Expiry.EndOfMonth,
        #                                                   Expiry.EndOfQuarter, Expiry.EndOfYear
        rebalancingPeriod = Expiry.EndOfMonth
        
        ### plotting ----------------------------------------------------------------------------------------------------------------
        
        # let's plot the series of daily total portfolio exposure %
        portfolioExposurePlot = Chart('Chart Total Portfolio Exposure %')
        portfolioExposurePlot.AddSeries(Series('Daily Portfolio Exposure %', SeriesType.Line, ''))
        self.AddChart(portfolioExposurePlot)
        
        # let's plot the series of drawdown % from the most recent high
        drawdownPlot = Chart('Chart Drawdown %')
        drawdownPlot.AddSeries(Series('Drawdown %', SeriesType.Line, '%'))
        self.AddChart(drawdownPlot)
        
        # let's plot the series of optimal weights
        optWeightsPlot = Chart('Chart Optimal Weights %')
        for ticker in tickers:
            optWeightsPlot.AddSeries(Series(ticker, SeriesType.Line, '%'))
        
        ### select modules ------------------------------------------------------------------------------------------------------------
        
        # set the brokerage model for slippage and fees
        self.SetBrokerageModel(AlphaStreamsBrokerageModel())
        
        # set requested data resolution
        self.UniverseSettings.Resolution = Resolution.Daily
        
        # Universe -------------------------------------------------------------
        symbols = []
        # loop through the tickers list and create symbols for the Universe
        for ticker in tickers:
            symbols.append(Symbol.Create(ticker, SecurityType.Equity, Market.USA))
        self.SetUniverseSelection(ManualUniverseSelectionModel(symbols))
        
        # Alpha ---------------------------------------------------------------
        self.SetAlpha(OptimalWeightsAlphaCreationModel(rebalancingPeriod = rebalancingPeriod,
                                                        objectiveFunction = objectiveFunction,
                                                        lookbackOptimization = lookbackOptimization))
        
        # Portfolio ------------------------------------------------------------
        pcm = InsightWeightingPortfolioConstructionModel(lambda time: rebalancingPeriod(time))
        pcm.RebalanceOnInsightChanges = False # disable rebalancing on insights changes (new/expired insights)
        pcm.RebalanceOnSecurityChanges = False # enable rebalancing on universe changes
        self.SetPortfolioConstruction(pcm)
        
        # Execution ------------------------------------------------------------
        self.SetExecution(ImmediateExecutionModel())
        
        # Risk -----------------------------------------------------------------
        self.SetRiskManagement(NullRiskManagementModel())
import matplotlib.pyplot as plt
import matplotlib.colors as colors
import matplotlib.ticker as mticker
import random
import pandas as pd
import numpy as np
from PortfolioOptimizerClass import PortfolioOptimizer

def CalculateRelativeRiskContributions(returnsDf, weights):

    ''' Calculate the Relative Risk Contributions for each asset given returns and weights '''

    covariance = returnsDf.cov()
    rrc = weights * np.dot(weights.T, covariance) / np.dot(weights.T, np.dot(covariance, weights))

    return rrc
    
def CalculateDrawdownSeries(timeSeries):

    ''' Calculate the drawdown series from a time series of cumulative returns '''

    df = timeSeries.to_frame()
    lastPeak = df.iloc[0][0]
    df['Drawdown'] = 1
    for i in range(len(df)):
        if df.iloc[i, 0] < lastPeak:
            df.iloc[i, 1] = df.iloc[i, 0] / lastPeak
        else:
            lastPeak = df.iloc[i, 0]
    
    finalDf = (df['Drawdown'] - 1)
    
    return finalDf
    
def CalculateMonthlyReturns(df):

    ''' Calculate the monthly returns from a dataframe of daily prices '''

    dfStartMonth = (df.groupby([df.index.year, df.index.month])
                    .apply(lambda x: x.head(1))) # group by year and month and take the first value of the month
    dfStartMonth.index = dfStartMonth.index.droplevel(0) # drop the index level we don't need
    dfStartMonth.index = dfStartMonth.index.droplevel(0) # drop the index level we don't need
    dfStartMonth = dfStartMonth.append(df.iloc[-1].to_frame().transpose()) # append last day to dfStartMonth
    dfFinal = dfStartMonth.pct_change().shift(-1).dropna() # calculate pct change, shift series up and drop nas

    return dfFinal
    
def CalculateAnnualizedVolatilityReturn(returnsDf, weights = None, weightsType = 'series', factor = 252):
    
    ''' Calculate the pair annualized volatility (std) and annualized return
    given returns, weights and annualization factor '''
    
    if weights is None:
        annualizedVolatility = returnsDf.std() * np.sqrt(factor)
        annualizedReturn = ((1 + returnsDf.mean())**factor) - 1
    else:
        if weightsType =='series':
            annualizedVolatility = returnsDf.mul(weights).sum(axis = 1).std() * np.sqrt(factor)
            annualizedReturn = ((1 + returnsDf.mul(weights).sum(axis = 1).mean())**factor) - 1
        elif weightsType == 'array':
            covariance = returnsDf.cov()
            annualizedVolatility = np.sqrt( np.dot(weights.T, np.dot(covariance * factor, weights)) )
            annualizedReturn = np.sum( ((1 + returnsDf.mean())**factor - 1) * weights )
        else:
            raise ValueError('weightsType must be one of: series or array')
    
    return annualizedVolatility, annualizedReturn
    
def PlotVolWeightsRrcComparison(plotDict, title, colors, plotSize = (20, 5)):
    
    ''' Plot a comparison across optimizations showing volatility, weights and rrc '''
    
    def ApplyPlotStyle(x, labels):
        x.set_xticklabels(labels, rotation = 45)
        ticks = mticker.FuncFormatter(lambda y, _: '{:.0%}'.format(y))
        x.yaxis.set_major_formatter(ticks)
        x.spines['right'].set_visible(False)
        x.spines['top'].set_visible(False)
        x.xaxis.set_ticks_position('none')
        x.yaxis.set_ticks_position('none')
    
    keysList = sorted(list(plotDict.keys()) * 3)
    n = len(list(plotDict.keys()))
    seriesList = [0, 1, 2] * n

    fig, axs = plt.subplots(n, int(n / 2), figsize = plotSize)
    #fig, axs = plt.subplots(3, 3, figsize = plotSize)
    fig.suptitle(title, size = 15)
    
    for i, ax in enumerate(fig.axes):
        plot = plotDict[keysList[i]][seriesList[i]]
        ax.bar(plot.index, plot.values, color = colors)
        ApplyPlotStyle(ax, plot.index)
        
        if seriesList[i] == 0:
            ax.set_ylabel(keysList[i], rotation = 90, size = 13)
            
        if i == 0:
            ax.set_title('Annualized Volatility', size = 13)
        elif i == 1:
            ax.set_title('Portfolio Weights', size = 13)
        elif i == 2:
            ax.set_title('Relative Risk Contribution', size = 13)
        
    fig.subplots_adjust(bottom = -1)
    
def PlotMonthlyWeights(weightsDict, lookbackForTitle, colors, plotSize = (20, 5)):
    
    ''' Plot a stackplot of the time series of monthly optimal weights for each objective function '''
    
    def ApplyPlotStyle(x, title):
        x.set_title(title, fontsize = 13)
        x.spines['right'].set_visible(False)
        x.spines['top'].set_visible(False)
        x.xaxis.set_ticks_position('none')
        x.yaxis.set_ticks_position('none')
    
    keysList = list(weightsDict.keys())
    n = len(keysList)

    fig, axs = plt.subplots(int(n / 2), int(n / 3), figsize = plotSize)
    fig.suptitle('Portfolio Optimization (' + str(lookbackForTitle) + '-Month Lookback) - Monthly Weights', size = 15)
    
    for i, ax in enumerate(fig.axes):
        plot = weightsDict[keysList[i]]
        ax.stackplot(plot.index, plot.T, colors = colors)
        title = keysList[i]
        if keysList[i] == 'equalWeighting':
            title = keysList[i]
        ApplyPlotStyle(ax, title)
        if i == 0:
            ax.legend(list(plot.columns), ncol = len(list(plot.columns)), bbox_to_anchor = (1.1, 1.25), loc = 'upper center')
        
    fig.subplots_adjust(bottom = -0.1)
    
def GenerateCumRetDf(returnsDf, weightsDict):
    
    ''' Generate a dataframe with the time series of cumulative returns
    for each objective function and individual asset '''
    
    cumRetList = []
    columnsList = []

    for objFunction in weightsDict:
        cumRet = returnsDf.mul(weightsDict[objFunction]).sum(axis = 1).add(1).cumprod() - 1
        cumRetList.append(cumRet)
        columnsList.append(objFunction)
    
    for ticker in returnsDf:
        data = returnsDf[ticker]
        cumRet = data.add(1).cumprod() - 1
        cumRetList.append(cumRet)
        columnsList.append(ticker)

    cumRetDf = pd.concat(cumRetList, axis = 1)
    currentColumnsList = list(cumRetDf.columns)
    cumRetDf = cumRetDf.rename(columns = {currentColumnsList[i]: columnsList[i] for i in range(len(currentColumnsList))})
    
    return cumRetDf
    
def GenerateDrawdownDf(returnsDf, weightsDict):
    
    ''' Generate the time series of drawdown for each objective function and individual asset '''
    
    ddList = []
    columnsList = []
    
    for objFunction in weightsDict:
        cumRet = returnsDf.mul(weightsDict[objFunction]).sum(axis = 1).add(1).cumprod()
        ddSeries = CalculateDrawdownSeries(cumRet)
        ddSeries.name = None
        ddList.append(ddSeries)
        columnsList.append(objFunction)
        
    for ticker in returnsDf:
        data = returnsDf[ticker]
        cumRet = data.add(1).cumprod()
        ddSeries = CalculateDrawdownSeries(cumRet)
        ddSeries.name = None
        ddList.append(ddSeries)
        columnsList.append(ticker)

    ddDf = pd.concat(ddList, axis = 1)
    currentColumnsList = list(ddDf.columns)
    ddDf = ddDf.rename(columns = {currentColumnsList[i]: columnsList[i] for i in range(len(currentColumnsList))})
    
    return ddDf
    
def PlotCumRetDD(cumRetDf, ddDf, title, colors, plotSize = (12, 8)):
    
    ''' Plot the time series of cumulative returns and drawdown '''
    
    def ApplyPlotStyle(x):
        ticks = mticker.FuncFormatter(lambda y, _: '{:.0%}'.format(y))
        x.yaxis.set_major_formatter(ticks)
        x.yaxis.grid(True)
        x.spines['right'].set_visible(False)
        x.spines['top'].set_visible(False)
        x.xaxis.set_ticks_position('none')
        x.yaxis.set_ticks_position('none')

    fig, (ax1, ax2) = plt.subplots(2, 1, figsize = plotSize)
    
    ax1.set_prop_cycle('color', colors)
    ax1.plot(cumRetDf)
    ax1.set_title(title, fontsize = 15)
    ax1.axes.get_xaxis().set_visible(False)
    ax1.spines['bottom'].set_visible(False)
    ApplyPlotStyle(ax1)
    
    ax2.set_prop_cycle('color', colors)
    ax2.plot(ddDf)
    ApplyPlotStyle(ax2)

    ax1.legend(list(cumRetDf.columns), loc = 'left')
    fig.tight_layout()
    
def PlotRiskRewardProfile(returnsDf, weightsDict, cumReturnsDf, drawdownDf, title, colors, plotSize = (12, 8)):
    
    '''
    Plot multiple scatter plots with different risk/reward profiles:
        1) Annualized Return/Annualized Volatility
        2) Sharpe Ratio/Maximum Drawdown
        3) Annualized Return/Maximum Drawdown
        4) Final summary table with results
    '''
    
    def ApplyPlot1Style(x, title):
        x.set_title(title, fontsize = 15)
        ticks = mticker.FuncFormatter(lambda y, _: '{:.0%}'.format(y))
        x.xaxis.set_major_formatter(ticks)
        x.yaxis.set_major_formatter(ticks)
        x.spines['right'].set_visible(False)
        x.spines['top'].set_visible(False)
        x.set_ylim(ymin = 0)
        x.set_xlim(xmin = 0)
        x.xaxis.label.set_size(12)
        x.yaxis.label.set_size(12)
        x.xaxis.set_ticks_position('none')
        x.yaxis.set_ticks_position('none')

    def ApplyPlot2Style(x, title):
        x.set_title(title, fontsize = 15)
        ticks = mticker.FuncFormatter(lambda y, _: '{:.0%}'.format(y))
        x.xaxis.set_major_formatter(ticks)
        x.spines['right'].set_visible(False)
        x.spines['top'].set_visible(False)
        x.set_ylim(ymin = 0)
        x.set_xlim(xmin = 0)
        x.xaxis.label.set_size(12)
        x.yaxis.label.set_size(12)
        x.xaxis.set_ticks_position('none')
        x.yaxis.set_ticks_position('none')

    def ApplyFormat(a, b, c, d, e):
        a = '{:.0%}'.format(a)
        b = '{:.0%}'.format(b)
        c = round(c, 1)
        d = '{:.0%}'.format(d)
        e = '{:.0%}'.format(e)

        return (a, b, c, d, e)

    fig, (ax1, ax2, ax3) = plt.subplots(3, 1, figsize = plotSize)
    fig.suptitle(title, fontsize = 15)

    dataList = []
    count = 0
    for objFunction in weightsDict:
        annualizedPortfolioVolatility, annualizedPortfolioReturn = CalculateAnnualizedVolatilityReturn(returnsDf = returnsDf,
                                                                                                        weights = weightsDict[objFunction],
                                                                                                        factor = 12)
        ax1.scatter(annualizedPortfolioVolatility, annualizedPortfolioReturn, color = colors[count], s = 100)
        ax1.text(annualizedPortfolioVolatility, annualizedPortfolioReturn, objFunction, verticalalignment = 'top',
                 horizontalalignment = 'left', fontsize = 13)

        cumRet = cumReturnsDf[objFunction][-1]
        maxDD = max(abs(drawdownDf[objFunction]))
        ax2.scatter(maxDD, annualizedPortfolioReturn, color = colors[count], s = 100)
        ax2.text(maxDD, annualizedPortfolioReturn, objFunction, verticalalignment = 'top',
                 horizontalalignment = 'left', fontsize = 13)
                 
        annualizedPortfolioSharpeRatio = annualizedPortfolioReturn / annualizedPortfolioVolatility
        ax3.scatter(maxDD, annualizedPortfolioSharpeRatio, color = colors[count], s = 100)
        ax3.text(maxDD, annualizedPortfolioSharpeRatio, objFunction, verticalalignment = 'top',
                 horizontalalignment = 'left', fontsize = 13)

        dataTuple = ApplyFormat(annualizedPortfolioReturn, annualizedPortfolioVolatility, annualizedPortfolioSharpeRatio, maxDD, cumRet)
        dataList.append(dataTuple)
        
        count += 1

    for ticker in returnsDf:
        data = returnsDf[ticker]
        annualizedVolatility, annualizedReturn = CalculateAnnualizedVolatilityReturn(returnsDf = data, weightsType = 'array', factor = 12)
        ax1.scatter(annualizedVolatility, annualizedReturn, color = 'black', s = 10)
        ax1.text(annualizedVolatility, annualizedReturn, ticker, verticalalignment = 'top',
                 horizontalalignment = 'left', fontsize = 8)
    
        cumRet = cumReturnsDf[[ticker]].iloc[-1][0]
        maxDD = max(abs(drawdownDf[[ticker]].values))[0]    
        ax2.scatter(maxDD, annualizedReturn, color = 'black', s = 10)
        ax2.text(maxDD, annualizedReturn, ticker, verticalalignment = 'top',
                 horizontalalignment = 'left', fontsize = 8)

        annualizedSharpeRatio = annualizedReturn / annualizedVolatility
        ax3.scatter(maxDD, annualizedSharpeRatio, color = 'black', s = 10)
        ax3.text(maxDD, annualizedSharpeRatio, ticker, verticalalignment = 'top',
                 horizontalalignment = 'left', fontsize = 8)

        dataTuple = ApplyFormat(annualizedReturn, annualizedVolatility, annualizedSharpeRatio, maxDD, cumRet)
        dataList.append(dataTuple)

    ApplyPlot1Style(ax1, title = 'Return-Volatility')
    ApplyPlot1Style(ax2, title = 'Return-Max Drawdown')
    ApplyPlot2Style(ax3, title = 'Sharpe Ratio-Max Drawdown')
    ax1.set(xlabel = 'Annualized Volatility (Standard Deviation)', ylabel = 'Annualized Return')
    ax2.set(xlabel = 'Maximum Drawdown', ylabel = 'Annualized Return')
    ax3.set(xlabel = 'Maximum Drawdown', ylabel = 'Annualized Sharpe Ratio')

    table = ax3.table(cellText = dataList,
                rowLabels = list(cumReturnsDf.columns),
                colLabels = ['Ann. Return', 'Ann. Volatility', 'Sharpe Ratio', 'Max DD', 'Cum. Return'],
                loc = 4, cellLoc = 'center', bbox = [0.1, -1, 0.9, 0.8])

    table.auto_set_font_size(False)
    table.set_fontsize(10)
    
    fig.subplots_adjust(top = 0.8, bottom = -1.2)
    
def PlotReturnVolatilityMultipleLookback(startMonth, returnsDf, weightsDict, title, colors, plotSize = (12, 8)):
    
    ''' Plot scatter plot with Return/Volatility for multiple combinations of objective functions and lookback periods '''
    
    def ApplyPlotStyle(x, title):
        x.set_title(title, fontsize = 15)
        x.set(xlabel = 'Annualized Volatility (Standard Deviation)', ylabel = 'Annualized Return')
        ticks = mticker.FuncFormatter(lambda y, _: '{:.0%}'.format(y))
        x.xaxis.set_major_formatter(ticks)
        x.yaxis.set_major_formatter(ticks)
        x.xaxis.label.set_size(13)
        x.yaxis.label.set_size(13)
        x.spines['right'].set_visible(False)
        x.spines['top'].set_visible(False)
        x.set_ylim(ymin = 0)
        x.set_xlim(xmin = 0)
    
    plt.figure(figsize = plotSize)
    
    keysList = []
    for month, objFunctions in weightsDict.items():
        adjustedMonthlyReturns = returnsDf[returnsDf.index.isin(startMonth[int(month):])]
        
        count = 0
        for objFunction, weights in objFunctions.items():
            if objFunction == 'equalWeighting' and 'equalWeighting' in keysList:
                count += 1
                continue

            annualizedPortfolioVolatility, annualizedPortfolioReturn = CalculateAnnualizedVolatilityReturn(returnsDf = adjustedMonthlyReturns,
                                                                                                            weights = weights, factor = 12)
            plt.scatter(annualizedPortfolioVolatility, annualizedPortfolioReturn, color = colors[count], s = 100)
            plt.text(annualizedPortfolioVolatility, annualizedPortfolioReturn, month, verticalalignment = 'top',
                     horizontalalignment = 'left', fontsize = 13)
            keysList.append(objFunction)
            count += 1
    
    ApplyPlotStyle(plt.gca(), title = title)
    uniqueKeys = sorted(set(keysList), key = keysList.index)
    plt.legend(uniqueKeys, loc = 'left')
    plt.show()

def GetCoordinatesEfficientFrontier(targetReturnsArray, returnsDf):
        
    ''' Return the pairs of volatility/return coordinates for the efficient frontier '''
    
    # initialize PortfolioOptimizer class
    portOpt = PortfolioOptimizer(minWeight = 0, maxWeight = 1)
    
    volatilities = []
    returns = []
    for targetReturn in targetReturnsArray:
        weights = portOpt.Optimize('meanVariance', returnsDf, targetReturn)
        annualizedPortfolioVolatility, annualizedPortfolioReturn = CalculateAnnualizedVolatilityReturn(returnsDf,
                                                                                                       weights,
                                                                                                       weightsType = 'array',
                                                                                                       factor = 252)
        volatilities.append(annualizedPortfolioVolatility)
        returns.append(annualizedPortfolioReturn)
        
    efficientFrontierList = [volatilities, returns]
    
    return efficientFrontierList
    
def PlotMeanVarianceSpace(returnsDf, objFunctionList, simulations = 1000, plotSize = (20, 5)):
    
    ''' Plot the mean-variance space (and efficient frontier)
    with simulations of portfolios, individual assets and optimal portfolios '''
    
    # initialize PortfolioOptimizer class
    portOpt = PortfolioOptimizer(minWeight = 0, maxWeight = 1)
    
    # dictionary to store pairs of volatility/return for objective functions and tickers
    volatilityReturnDict = {}
    
    # loop through the objective functions to generate optimal weights and calculate the pairs of volatility/return for each
    for objfunction in objFunctionList:
        weights = portOpt.Optimize(objfunction, returnsDf)
        annualizedPortfolioVolatility, annualizedPortfolioReturn = CalculateAnnualizedVolatilityReturn(returnsDf,
                                                                                                       weights,
                                                                                                       weightsType = 'array',
                                                                                                       factor = 252)
        volatilityReturnDict[objfunction] = [annualizedPortfolioVolatility, annualizedPortfolioReturn]
    
    # loop through the tickers and calculate the pairs of volatility/return for each
    for ticker in returnsDf:
        data = returnsDf[ticker]
        annualizedVolatility, annualizedReturn = CalculateAnnualizedVolatilityReturn(returnsDf = data, weightsType = 'array',
                                                                                     factor = 252)
        volatilityReturnDict[ticker] = [annualizedVolatility, annualizedReturn]

    # calculate the efficient frontier
    # make an array of target returns between the minimum return and maximum return to run mean-variance optimization
    returnsList = [value[1] for key, value in volatilityReturnDict.items()]
    
    targetReturnsArray = np.linspace(volatilityReturnDict['minVariance'][1], max(returnsList), 100)
    efficientFrontierList = GetCoordinatesEfficientFrontier(targetReturnsArray, returnsDf)
    
    targetReturnsArray = np.linspace(min(returnsList), volatilityReturnDict['minVariance'][1], 100)
    beforeEfficientFrontierList = GetCoordinatesEfficientFrontier(targetReturnsArray, returnsDf)
    
    # run simulations of portfolios and extract their pairs of volatility/return
    n = returnsDf.columns.size
    volatilities = []
    returns = []
    
    for i in range(simulations):
        weights = np.random.dirichlet(np.ones(n), size = 1)
        weights = weights[0]
        annualizedPortfolioVolatility, annualizedPortfolioReturn = CalculateAnnualizedVolatilityReturn(returnsDf = returnsDf, weights = weights,
                                                                                                        weightsType = 'array', factor = 252)
        volatilities.append(annualizedPortfolioVolatility)
        returns.append(annualizedPortfolioReturn)

    simulationsVolatilitiesReturns = [np.array(volatilities), np.array(returns)]
    
    # plotting
    def ApplyPlotStyle(x, title):
        x.set_title(title, fontsize = 15)
        x.set(xlabel = 'Annualized Volatility (Standard Deviation)', ylabel = 'Annualized Return')
        ticks = mticker.FuncFormatter(lambda y, _: '{:.0%}'.format(y))
        x.xaxis.set_major_formatter(ticks)
        x.yaxis.set_major_formatter(ticks)
        x.xaxis.label.set_size(13)
        x.yaxis.label.set_size(13)
        x.spines['right'].set_visible(False)
        x.spines['top'].set_visible(False)
        x.xaxis.set_ticks_position('none')
        x.yaxis.set_ticks_position('none')
        
    # initialize figure size
    plt.figure(figsize = plotSize)
    
    # plot simulated portfolios
    plt.scatter(simulationsVolatilitiesReturns[0], simulationsVolatilitiesReturns[1],
                c = simulationsVolatilitiesReturns[1] / simulationsVolatilitiesReturns[0],
                marker = 'o', alpha = 0.1)
    
    # plot efficient frontier
    plt.plot(efficientFrontierList[0], efficientFrontierList[1], '-', c = 'red')
    plt.plot(beforeEfficientFrontierList[0], beforeEfficientFrontierList[1], '--', c = 'black')
    
    # plot optimal portfolios
    for objFunction, volatilityReturn in volatilityReturnDict.items():
        if objFunction == 'maxReturn':
            offsetText = -0.005
        else:
            offsetText = 0
        plt.plot(volatilityReturn[0], volatilityReturn[1], '-o', c = 'black')
        plt.text(volatilityReturn[0], volatilityReturn[1] + offsetText, objFunction, verticalalignment = 'top',
                horizontalalignment = 'left', fontsize = 12, c = 'black')
    
    ApplyPlotStyle(plt.gca(), title = 'Mean-Variance')
    plt.colorbar(label = 'Sharpe Ratio', pad = 0.1)
    plt.show()
from clr import AddReference
AddReference("System")
AddReference("QuantConnect.Common")
AddReference("QuantConnect.Algorithm")
AddReference("QuantConnect.Algorithm.Framework")

from System import *
from QuantConnect import *
from QuantConnect.Algorithm import *
from QuantConnect.Algorithm.Framework import *
from QuantConnect.Algorithm.Framework.Alphas import AlphaModel, Insight, InsightType, InsightDirection

import pandas as pd
from PortfolioOptimizerClass import PortfolioOptimizer

class OptimalWeightsAlphaCreationModel(AlphaModel):

    def __init__(self, rebalancingPeriod = Expiry.EndOfMonth, objectiveFunction = 'riskParity', lookbackOptimization = 63):
        
        self.rebalancingPeriod = rebalancingPeriod
        self.objectiveFunction = objectiveFunction
        self.lookbackOptimization = lookbackOptimization
        
        self.securities = [] # list to store securities to consider
        self.portfolioValueHigh = 0 # initialize portfolioValueHigh for drawdown calculation
        self.portfolioValueHighInitialized = False # initialize portfolioValueHighInitialized for drawdown calculation
        
        # initialize PortfolioOptimizer class
        self.portOpt = PortfolioOptimizer(minWeight = 0, maxWeight = 1)

        self.nextRebalancingTime = None
        
    def Update(self, algorithm, data):
        
        # initialize nextRebalancingTime
        if self.nextRebalancingTime is None:
            self.nextRebalancingTime = self.rebalancingPeriod(algorithm.Time)
        
        insights = [] # list to store the new insights to be created
        
        # make sure we only send insights at rebalancing
        if algorithm.Time >= self.nextRebalancingTime:
            
            ### plotting ----------------------------------------------------------------------------------------
            currentTotalPortfolioValue = algorithm.Portfolio.TotalPortfolioValue # get current portfolio value
            
            # plot the daily total portfolio exposure %
            totalPortfolioExposure = (algorithm.Portfolio.TotalHoldingsValue / currentTotalPortfolioValue) * 100
            algorithm.Plot('Chart Total Portfolio Exposure %', 'Daily Portfolio Exposure %', totalPortfolioExposure)
            
            # plot the drawdown % from the most recent high
            if not self.portfolioValueHighInitialized:
                self.portfolioHigh = currentTotalPortfolioValue # set initial portfolio value
                self.portfolioValueHighInitialized = True
                
            # update trailing high value of the portfolio
            if self.portfolioValueHigh < currentTotalPortfolioValue:
                self.portfolioValueHigh = currentTotalPortfolioValue
    
            currentDrawdownPercent = ((float(currentTotalPortfolioValue) / float(self.portfolioValueHigh)) - 1.0) * 100
            algorithm.Plot('Chart Drawdown %', 'Drawdown %', currentDrawdownPercent)
        
            ### generate insights ------------------------------------------------------------------------------
            
            # calculate optimal weights
            symbols = [security.Symbol for security in self.securities]
            weights = self.CalculateOptimalWeights(algorithm, symbols, self.objectiveFunction, self.lookbackOptimization)
            
            # insight expiry time and direction
            insightExpiry = Expiry.EndOfDay(algorithm.Time)
            insightDirection = InsightDirection.Up # insight direction
            
            # loop through securities and generate insights
            for security in self.securities:
                weight = weights[str(security.Symbol.Value)]
                
                # append the insights list with the prediction and weights for each symbol
                insights.append(Insight.Price(security.Symbol, insightExpiry, insightDirection,
                                None, None, None, weight))
                                
                algorithm.Plot('Chart Optimal Weights %', security.Symbol.Value, float(weight))
                
            self.nextRebalancingTime = self.rebalancingPeriod(algorithm.Time)
            
        return insights
        
    def CalculateOptimalWeights(self, algorithm, symbols, objectiveFunction, lookbackOptimization):
            
        '''
        Description:
            Calculate the optimal weights for each symbol provided
        Args:
            algorithm: The algorithm instance that experienced the change in securities
            symbols: The symbols in current universe
            objectiveFunction: The objective function for optimization
            lookbackOptimization: The number of days to look back to calculate optimal weights
        '''
        
        # get historical close prices
        historyClosePrices = algorithm.History(symbols, lookbackOptimization, Resolution.Daily)['close'].unstack(level = 0)
        
        # calculate daily returns
        returnsDf = historyClosePrices.pct_change().dropna()
        # rename the columns in the dataframe in order to have tickers and not symbol strings
        columnsList = list(returnsDf.columns)
        returnsDf.rename(columns = {columnsList[i]: algorithm.ActiveSecurities[columnsList[i]].Symbol.Value for i in range(len(columnsList))}, inplace = True)
        
        # calculate optimal weights
        weights = self.portOpt.Optimize(objectiveFunction, returnsDf)
        # convert the weights to a pandas Series
        weights = pd.Series(weights, index = returnsDf.columns, name = 'weights')
        
        algorithm.Log(weights)
        
        return weights
        
    def OnSecuritiesChanged(self, algorithm, changes):
        
        '''
        Description:
            Event fired each time the we add/remove securities from the data feed
        Args:
            algorithm: The algorithm instance that experienced the change in securities
            changes: The security additions and removals from the algorithm
        '''
        
        # add new securities
        for added in changes.AddedSecurities:
            algorithm.Log('adding symbol: ' + str(added.Symbol))
            self.securities.append(added)

        # remove securities
        for removed in changes.RemovedSecurities:
            if removed in self.securities:
                self.securities.remove(removed)