Overall Statistics |
Total Orders 478 Average Win 1.58% Average Loss -1.03% Compounding Annual Return 15.882% Drawdown 33.600% Expectancy 0.699 Start Equity 1000000 End Equity 6055745.16 Net Profit 505.575% Sharpe Ratio 0.721 Sortino Ratio 0.734 Probabilistic Sharpe Ratio 20.773% Loss Rate 33% Win Rate 67% Profit-Loss Ratio 1.53 Alpha 0.011 Beta 0.997 Annual Standard Deviation 0.139 Annual Variance 0.019 Information Ratio 0.689 Tracking Error 0.015 Treynor Ratio 0.1 Total Fees $19099.23 Estimated Strategy Capacity $1800000000.00 Lowest Capacity Asset SPY R735QTJ8XC9X Portfolio Turnover 3.72% |
# region imports from AlgorithmImports import * # endregion class Topseven(QCAlgorithm): _winter = [ datetime(2012, 2, 2), datetime(2013, 2, 2), datetime(2014, 2, 2), datetime(2015, 2, 2), datetime(2016, 2, 2), datetime(2017, 2, 2), datetime(2018, 2, 2), datetime(2019, 2, 2), datetime(2020, 2, 2), datetime(2021, 2, 2), datetime(2022, 2, 2), datetime(2023, 2, 2), # ... ] _spring = [ datetime(2012, 4, 30), datetime(2013, 4, 30), datetime(2014, 4, 30), datetime(2015, 4, 30), datetime(2016, 4, 30), datetime(2017, 4, 30), datetime(2018, 4, 30), datetime(2019, 4, 30), datetime(2020, 4, 30), datetime(2021, 4, 30), datetime(2022, 4, 30), datetime(2023, 4, 30), # ... ] _summer = [ datetime(2012, 7, 30), datetime(2013, 7, 30), datetime(2014, 7, 30), datetime(2015, 7, 30), datetime(2016, 7, 30), datetime(2017, 7, 30), datetime(2018, 7, 30), datetime(2019, 7, 30), datetime(2020, 7, 30), datetime(2021, 7, 30), datetime(2022, 7, 30), datetime(2023, 7, 30), # ... ] _autumn = [ datetime(2012, 10, 31), datetime(2013, 10, 31), datetime(2014, 10, 31), datetime(2015, 10, 31), datetime(2016, 10, 31), datetime(2017, 10, 31), datetime(2018, 10, 31), datetime(2019, 10, 31), datetime(2020, 10, 31), datetime(2021, 10, 31), datetime(2022, 10, 31), datetime(2023, 10, 31), # ... ] def initialize(self): # Locally Lean installs free sample data, to download more data please visit https://www.quantconnect.com/docs/v2/lean-cli/datasets/downloading-data self.set_start_date(2012, 5, 18) # Set Start Date self.set_end_date(2024, 10, 30) # Set End Date self.set_cash(1000000) # Set Strategy Cash self._spy = self.add_equity("SPY", Resolution.DAILY) self._amzn = self.add_equity("AMZN", Resolution.DAILY) self._google = self.add_equity("GOOGL", Resolution.DAILY) self._meta = self.add_equity("META", Resolution.DAILY) #self._spy = self.add_equity("SPY", Resolution.DAILY) self._appl = self.add_equity("APPL", Resolution.DAILY) self._msft = self.add_equity("MSFT", Resolution.DAILY) for holidays in [self._winter, self._spring, self._summer, self._autumn]: for holiday in holidays: self.schedule.on( self.date_rules.on(self._spy.exchange.hours.get_next_market_close(holiday - timedelta(14), False)), self.time_rules.before_market_close(self._spy.symbol, 1), lambda: self.set_holdings([PortfolioTarget(self._amzn.symbol, 0.2),PortfolioTarget(self._google.symbol, 0.2), PortfolioTarget(self._meta.symbol, 0.2), PortfolioTarget(self._appl.symbol, 0.2), PortfolioTarget(self._msft.symbol, 0.2)], True) ) # Hold SPY after the holiday. self.schedule.on( self.date_rules.on(self._spy.exchange.hours.get_next_market_close(holiday + timedelta(1), False)), self.time_rules.before_market_close(self._spy.symbol, 1), lambda: self.set_holdings([PortfolioTarget(self._spy.symbol, 1)], True) ) def on_data(self, data: Slice): """on_data event is the primary entry point for your algorithm. Each new data point will be pumped in here. Arguments: data: Slice object keyed by symbol containing the stock data """ if not self._spy.holdings.invested: self.set_holdings("SPY", 1) self.debug("Purchased Stock") if self._amzn.holdings.invested: self.liquidate(self._amzn.symbol) self.liquidate(self._google.symbol) self.liquidate(self._msft.symbol) self.liquidate(self._appl.symbol) self.liquidate(self._meta.symbol) self._contract_symbol = None