Overall Statistics
Total Trades
9
Average Win
0.39%
Average Loss
-0.62%
Compounding Annual Return
-20.439%
Drawdown
3.400%
Expectancy
-0.187
Net Profit
-1.492%
Sharpe Ratio
-1.801
Loss Rate
50%
Win Rate
50%
Profit-Loss Ratio
0.63
Alpha
-0.077
Beta
-0.273
Annual Standard Deviation
0.098
Annual Variance
0.01
Information Ratio
-4.25
Tracking Error
0.126
Treynor Ratio
0.645
Total Fees
$9.00
#
#   QuantConnect Basic Template:
#	Fundamentals to using a QuantConnect algorithm.
#
#	You can view the QCAlgorithm base class on Github: 
#	https://github.com/QuantConnect/Lean/tree/master/Algorithm
#

from QuantConnect.Data.Market import TradeBar
from datetime import timedelta
from System import *
from QuantConnect import *
from QuantConnect.Algorithm import *
from QuantConnect.Indicators import *
import decimal as d


class MyAlgorithm(QCAlgorithm):
    def Initialize(self):
        self.SetStartDate(2017, 8, 21)  # Set Start Date
        self.SetEndDate(2017, 9, 13)
        self.SetCash(10000)  # Set Strategy Cash
        self.symbol = self.AddEquity("AAPL", Resolution.Second).Symbol

        consolidator_daily = TradeBarConsolidator(timedelta(1))
        consolidator_daily.DataConsolidated += self.OnDailyData
        self.SubscriptionManager.AddConsolidator(self.symbol, consolidator_daily)

        consolidator_minute = TradeBarConsolidator(60)
        consolidator_minute.DataConsolidated += self.OnMinuteData
        self.SubscriptionManager.AddConsolidator(self.symbol, consolidator_minute)

        self.daily_rw = RollingWindow[TradeBar](2)
        self.minute_rw = RollingWindow[TradeBar](2)
        self.window = RollingWindow[TradeBar](2)

        self.Schedule.On(self.DateRules.EveryDay(),
                         self.TimeRules.AfterMarketOpen(self.symbol, 5),
                         Action(self.one_minute_after_open_market))

        self.Schedule.On(self.DateRules.EveryDay(),
                         self.TimeRules.BeforeMarketClose(self.symbol, 1),
                         Action(self.before_close_market))

    # Add daily bar to daily rolling window
    def OnDailyData(self, sender, bar):
        self.daily_rw.Add(bar)

    def OnMinuteData(self, sender, bar):
        self.minute_rw.Add(bar)

    def one_minute_after_open_market(self):
        """
        At 9:31 check if there has been a gap at the market open from the previous day.
        If so and the stock is gapping up and the first minute bar is negative, create a short selling signal.
        If the stock is gapping down and the first minute bar is positive, create a buying signal.
        """
        if not (self.window.IsReady and self.daily_rw.IsReady and self.minute_rw.IsReady): return
        last_close = self.window[0].Close
        #self.Log(last_close)
        yesterday_daily_close = self.daily_rw[1].Close
        first_minute_close = self.minute_rw[1].Close
        first_minute_open = self.minute_rw[1].Open
        
        gap = last_close - yesterday_daily_close
        first_minute_bar = first_minute_close - first_minute_open

        if not self.Portfolio[self.symbol].Invested:
            # If the stock is gapping down and the first minute bar is positive, create a buying signal.
            if gap < 0 and first_minute_bar > 0:
                self.SetHoldings(self.symbol, 1)
                self.Log('GOING LONG')
                self.Log('Last bar close: {0}'.format(last_close))
                self.Log('Pr day close: {0}'.format(yesterday_daily_close))
                self.Log('First min close: {0}'.format(first_minute_close))
                self.Log('First min open: {0}'.format(first_minute_open))
            # If the stock is gapping up and the first minute bar is negative, create a short selling signal
            elif gap > 0 and first_minute_bar < 0:
                self.SetHoldings(self.symbol, -1)
                self.Log('GOING SHORT')

    def before_close_market(self):
    	"""
    	At the end of the day, if there is a short position, close it.
    	"""
        if self.Portfolio[self.symbol].IsShort:
            self.Liquidate(self.symbol)
            self.Log('LIQUIDATE SHORT End of Day')

    # Add second bar to window rolling window
    def OnData(self, data):
        if data[self.symbol] is None:
            return
        self.window.Add(data[self.symbol])
        if not (self.window.IsReady):
            return
        # self.Log("haha")
        factor = d.Decimal(1.01)

        currBar = self.window[0].Close
        
        # Every second, check the price and if it's higher than the price the stock was bought for times 1.01, close the position.
        if self.Portfolio[self.symbol].Invested and self.Portfolio[self.symbol].AveragePrice * factor < currBar:
            self.Liquidate(self.symbol)
            self.Log('LIQUIDATE AT THRESHOLD REACHED.')