Overall Statistics |
Total Trades 9 Average Win 0.39% Average Loss -0.62% Compounding Annual Return -20.439% Drawdown 3.400% Expectancy -0.187 Net Profit -1.492% Sharpe Ratio -1.801 Loss Rate 50% Win Rate 50% Profit-Loss Ratio 0.63 Alpha -0.077 Beta -0.273 Annual Standard Deviation 0.098 Annual Variance 0.01 Information Ratio -4.25 Tracking Error 0.126 Treynor Ratio 0.645 Total Fees $9.00 |
# # QuantConnect Basic Template: # Fundamentals to using a QuantConnect algorithm. # # You can view the QCAlgorithm base class on Github: # https://github.com/QuantConnect/Lean/tree/master/Algorithm # from QuantConnect.Data.Market import TradeBar from datetime import timedelta from System import * from QuantConnect import * from QuantConnect.Algorithm import * from QuantConnect.Indicators import * import decimal as d class MyAlgorithm(QCAlgorithm): def Initialize(self): self.SetStartDate(2017, 8, 21) # Set Start Date self.SetEndDate(2017, 9, 13) self.SetCash(10000) # Set Strategy Cash self.symbol = self.AddEquity("AAPL", Resolution.Second).Symbol consolidator_daily = TradeBarConsolidator(timedelta(1)) consolidator_daily.DataConsolidated += self.OnDailyData self.SubscriptionManager.AddConsolidator(self.symbol, consolidator_daily) consolidator_minute = TradeBarConsolidator(60) consolidator_minute.DataConsolidated += self.OnMinuteData self.SubscriptionManager.AddConsolidator(self.symbol, consolidator_minute) self.daily_rw = RollingWindow[TradeBar](2) self.minute_rw = RollingWindow[TradeBar](2) self.window = RollingWindow[TradeBar](2) self.Schedule.On(self.DateRules.EveryDay(), self.TimeRules.AfterMarketOpen(self.symbol, 5), Action(self.one_minute_after_open_market)) self.Schedule.On(self.DateRules.EveryDay(), self.TimeRules.BeforeMarketClose(self.symbol, 1), Action(self.before_close_market)) # Add daily bar to daily rolling window def OnDailyData(self, sender, bar): self.daily_rw.Add(bar) def OnMinuteData(self, sender, bar): self.minute_rw.Add(bar) def one_minute_after_open_market(self): """ At 9:31 check if there has been a gap at the market open from the previous day. If so and the stock is gapping up and the first minute bar is negative, create a short selling signal. If the stock is gapping down and the first minute bar is positive, create a buying signal. """ if not (self.window.IsReady and self.daily_rw.IsReady and self.minute_rw.IsReady): return last_close = self.window[0].Close #self.Log(last_close) yesterday_daily_close = self.daily_rw[1].Close first_minute_close = self.minute_rw[1].Close first_minute_open = self.minute_rw[1].Open gap = last_close - yesterday_daily_close first_minute_bar = first_minute_close - first_minute_open if not self.Portfolio[self.symbol].Invested: # If the stock is gapping down and the first minute bar is positive, create a buying signal. if gap < 0 and first_minute_bar > 0: self.SetHoldings(self.symbol, 1) self.Log('GOING LONG') self.Log('Last bar close: {0}'.format(last_close)) self.Log('Pr day close: {0}'.format(yesterday_daily_close)) self.Log('First min close: {0}'.format(first_minute_close)) self.Log('First min open: {0}'.format(first_minute_open)) # If the stock is gapping up and the first minute bar is negative, create a short selling signal elif gap > 0 and first_minute_bar < 0: self.SetHoldings(self.symbol, -1) self.Log('GOING SHORT') def before_close_market(self): """ At the end of the day, if there is a short position, close it. """ if self.Portfolio[self.symbol].IsShort: self.Liquidate(self.symbol) self.Log('LIQUIDATE SHORT End of Day') # Add second bar to window rolling window def OnData(self, data): if data[self.symbol] is None: return self.window.Add(data[self.symbol]) if not (self.window.IsReady): return # self.Log("haha") factor = d.Decimal(1.01) currBar = self.window[0].Close # Every second, check the price and if it's higher than the price the stock was bought for times 1.01, close the position. if self.Portfolio[self.symbol].Invested and self.Portfolio[self.symbol].AveragePrice * factor < currBar: self.Liquidate(self.symbol) self.Log('LIQUIDATE AT THRESHOLD REACHED.')