Overall Statistics |
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio 0 Tracking Error 0 Treynor Ratio 0 Total Fees $0.00 |
# # QuantConnect Basic Template: # Fundamentals to using a QuantConnect algorithm. # # You can view the QCAlgorithm base class on Github: # https://github.com/QuantConnect/Lean/tree/master/Algorithm # import numpy as np class BasicTemplateAlgorithm(QCAlgorithm): def Initialize(self): self.SetCash(100000) self.SetStartDate(2016,1,5) self.SetEndDate(2017,1,1) self.AddSecurity(SecurityType.Equity, "IBM", Resolution.Daily) self.AddSecurity(SecurityType.Equity, "GOOG", Resolution.Daily) self._count = 0 def OnData(self, slice): if not self._count: self.SetHoldings(self.Securities["IBM"].Symbol, 0.5) self.Liquidate(self.Securities["IBM"].Symbol) self._count+=1