Overall Statistics |
Total Trades 21 Average Win 10.16% Average Loss -2.37% Compounding Annual Return 18.822% Drawdown 37.400% Expectancy 0.320 Net Profit 5.932% Sharpe Ratio 0.552 Probabilistic Sharpe Ratio 35.879% Loss Rate 75% Win Rate 25% Profit-Loss Ratio 4.28 Alpha 0.294 Beta 0.557 Annual Standard Deviation 0.532 Annual Variance 0.283 Information Ratio 0.576 Tracking Error 0.511 Treynor Ratio 0.527 Total Fees $600.09 Estimated Strategy Capacity $6000.00 Lowest Capacity Asset CERU VPLW2D47KBXH |
from Execution.ImmediateExecutionModel import ImmediateExecutionModel from Portfolio.EqualWeightingPortfolioConstructionModel import EqualWeightingPortfolioConstructionModel from Risk.MaximumDrawdownPercentPerSecurity import MaximumDrawdownPercentPerSecurity from UniverseSelectionModel import * from EmaCrossAlphaModel import * class GoldenCrossAlgo(QCAlgorithm): def Initialize(self): self.SetStartDate(2020, 2, 1) # Set Start Date self.SetEndDate(2020, 6, 1)# Set Start Date self.SetCash(10000) # Set Strategy Cash self.SetBenchmark("SPY") """ self.AddEquity("CMCO", Resolution.Daily) self.AddEquity("AY", Resolution.Daily) self.AddEquity("CFB", Resolution.Daily) self.AddEquity("AGC", Resolution.Daily) self.AddEquity("DSWL", Resolution.Daily) self.AddEquity("DARE", Resolution.Daily) self.AddEquity("DLTR", Resolution.Daily) self.AddEquity("FLXN", Resolution.Daily) self.AddEquity("FORM", Resolution.Daily) self.AddEquity("AAME", Resolution.Daily) """ self.AddEquity("DARE", Resolution.Daily) self.model = EmaCrossAlphaModel(50, 200, Resolution.Daily) self.AddAlpha(self.model) self.SetExecution(ImmediateExecutionModel()) self.SetPortfolioConstruction(EqualWeightingPortfolioConstructionModel()) self.SetRiskManagement(MaximumDrawdownPercentPerSecurity(0.02)) self.__numberOfSymbols = 100 self.__numberOfSymbolsFine = 5 # self.SetUniverseSelection(EverythingUniverseSelectionModel(True, Resolution.Hour)) self.Log("Initialize complete") def OnData(self, data): '''OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here. Arguments: data: Slice object keyed by symbol containing the stock data ''' self.Log ("OnData() data.len=" + str(len(data))+ ", model.symbolDataBySymbol.len=" + str(len(self.model.symbolDataBySymbol))) # if not self.Portfolio.Invested: # self.SetHoldings("SPY", 1)
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from AlgorithmImports import * from Selection.FundamentalUniverseSelectionModel import FundamentalUniverseSelectionModel from itertools import groupby from math import ceil class EverythingUniverseSelectionModel(FundamentalUniverseSelectionModel): '''Defines the QC500 universe as a universe selection model for framework algorithm For details: https://github.com/QuantConnect/Lean/pull/1663''' def __init__(self, filterFineData = True, universeSettings = None): '''Initializes a new default instance of the QC500UniverseSelectionModel''' super().__init__(filterFineData, universeSettings) self.numberOfSymbolsCoarse = 1000 self.numberOfSymbolsFine = 20 #500 self.dollarVolumeBySymbol = {} self.lastMonth = -1 def SelectCoarse(self, algorithm, coarse): '''Performs coarse selection for the QC500 constituents. The stocks must have fundamental data The stock must have positive previous-day close price The stock must have positive volume on the previous trading day''' if algorithm.Time.month == self.lastMonth: return Universe.Unchanged sortedByDollarVolume = sorted([x for x in coarse if x.HasFundamentalData and x.Volume > 0 and x.Price > 0], key = lambda x: x.DollarVolume, reverse=True)[:self.numberOfSymbolsCoarse] self.dollarVolumeBySymbol = {x.Symbol:x.DollarVolume for x in sortedByDollarVolume} # If no security has met the QC500 criteria, the universe is unchanged. # A new selection will be attempted on the next trading day as self.lastMonth is not updated if len(self.dollarVolumeBySymbol) == 0: return Universe.Unchanged # return the symbol objects our sorted collection return list(self.dollarVolumeBySymbol.keys()) def SelectFine(self, algorithm, fine): '''Performs fine selection for the QC500 constituents The company's headquarter must in the U.S. The stock must be traded on either the NYSE or NASDAQ At least half a year since its initial public offering The stock's market cap must be greater than 500 million''' sortedBySector = sorted([x for x in fine if x.CompanyReference.CountryId == "USA" and x.CompanyReference.PrimaryExchangeID in ["NYS","NAS"] and (algorithm.Time - x.SecurityReference.IPODate).days > 180 and x.MarketCap > 5e8], key = lambda x: x.CompanyReference.IndustryTemplateCode) count = len(sortedBySector) # If no security has met the QC500 criteria, the universe is unchanged. # A new selection will be attempted on the next trading day as self.lastMonth is not updated if count == 0: return Universe.Unchanged # Update self.lastMonth after all QC500 criteria checks passed self.lastMonth = algorithm.Time.month percent = self.numberOfSymbolsFine / count sortedByDollarVolume = [] # select stocks with top dollar volume in every single sector for code, g in groupby(sortedBySector, lambda x: x.CompanyReference.IndustryTemplateCode): y = sorted(g, key = lambda x: self.dollarVolumeBySymbol[x.Symbol], reverse = True) c = ceil(len(y) * percent) sortedByDollarVolume.extend(y[:c]) sortedByDollarVolume = sorted(sortedByDollarVolume, key = lambda x: self.dollarVolumeBySymbol[x.Symbol], reverse=True) return [x.Symbol for x in sortedByDollarVolume[:self.numberOfSymbolsFine]]
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from AlgorithmImports import * class EmaCrossAlphaModel(AlphaModel): '''Alpha model that uses an EMA cross to create insights''' def __init__(self, fastPeriod = 12, slowPeriod = 26, resolution = Resolution.Daily): '''Initializes a new instance of the EmaCrossAlphaModel class Args: fastPeriod: The fast EMA period slowPeriod: The slow EMA period''' self.fastPeriod = fastPeriod self.slowPeriod = slowPeriod self.resolution = resolution self.predictionInterval = Time.Multiply(Extensions.ToTimeSpan(resolution), fastPeriod) self.symbolDataBySymbol = {} resolutionString = Extensions.GetEnumString(resolution, Resolution) self.Name = '{}({},{},{})'.format(self.__class__.__name__, fastPeriod, slowPeriod, resolutionString) def Update(self, algorithm, data): '''Updates this alpha model with the latest data from the algorithm. This is called each time the algorithm receives data for subscribed securities Args: algorithm: The algorithm instance data: The new data available Returns: The new insights generated''' algorithm.Log("EmaCrossAlphaModel.Update() - data.len=" + str(len(data)) + ", symbolDataBySymbol.len=" + str(len(self.symbolDataBySymbol))) insights = [] for symbol, symbolData in self.symbolDataBySymbol.items(): algorithm.Log(str(algorithm.Time) + " " + str(symbolData.Symbol) + " symbolData.Fast.IsReady=" + str(symbolData.Fast.IsReady) + ", symbolData.Slow.IsReady=" + str(symbolData.Slow.IsReady)) if symbolData.Fast.IsReady and symbolData.Slow.IsReady: if symbolData.FastIsOverSlow: if symbolData.Slow > symbolData.Fast: insights.append(Insight.Price(symbolData.Symbol, self.predictionInterval, InsightDirection.Down)) elif symbolData.SlowIsOverFast: if symbolData.Fast > symbolData.Slow: insights.append(Insight.Price(symbolData.Symbol, self.predictionInterval, InsightDirection.Up)) symbolData.FastIsOverSlow = symbolData.Fast > symbolData.Slow algorithm.Log("returning insights, len=" + str(len(insights))) for x in insights: algorithm.Log(" " + str(x.Symbol) + " direction=" + str(x.Direction)) return insights def OnSecuritiesChanged(self, algorithm, changes): '''Event fired each time the we add/remove securities from the data feed Args: algorithm: The algorithm instance that experienced the change in securities changes: The security additions and removals from the algorithm''' algorithm.Log("EmaCrossAlphaModel.OnSecuritiesChanged()") for added in changes.AddedSecurities: symbolData = self.symbolDataBySymbol.get(added.Symbol) if symbolData is None: algorithm.Log("AddedSecurities new " + str(added.Symbol)) symbolData = SymbolData(added) # create fast/slow EMAs symbolData.Fast = algorithm.EMA(added.Symbol, self.fastPeriod, self.resolution) algorithm.WarmUpIndicator(added.Symbol, symbolData.Fast, self.resolution) symbolData.Slow = algorithm.EMA(added.Symbol, self.slowPeriod, self.resolution) algorithm.WarmUpIndicator(added.Symbol, symbolData.Slow, self.resolution) self.symbolDataBySymbol[added.Symbol] = symbolData else: # a security that was already initialized was re-added, reset the indicators algorithm.Log("AddedSecurities reset " + str(added.Symbol)) symbolData.Fast.Reset() symbolData.Slow.Reset() class SymbolData: '''Contains data specific to a symbol required by this model''' def __init__(self, security): self.Security = security self.Symbol = security.Symbol self.Fast = None self.Slow = None # True if the fast is above the slow, otherwise false. # This is used to prevent emitting the same signal repeatedly self.FastIsOverSlow = False @property def SlowIsOverFast(self): return not self.FastIsOverSlow