Overall Statistics |
Total Trades 7 Average Win 44.33% Average Loss -16.51% Compounding Annual Return 231.697% Drawdown 35.700% Expectancy 1.457 Net Profit 770.746% Sharpe Ratio 1.763 Loss Rate 33% Win Rate 67% Profit-Loss Ratio 2.69 Alpha 0.995 Beta -0.15 Annual Standard Deviation 0.556 Annual Variance 0.31 Information Ratio 1.574 Tracking Error 0.566 Treynor Ratio -6.531 Total Fees $2044.99 |
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import clr from clr import AddReference clr.AddReference("System") clr.AddReference("QuantConnect.Algorithm") clr.AddReference("QuantConnect.Indicators") clr.AddReference("QuantConnect.Common") from System import * import numpy as np from QuantConnect import * from QuantConnect.Data import * from QuantConnect.Algorithm import * from QuantConnect.Indicators import * import decimal as d ### <summary> ### In this example we look at the canonical 15/30 day moving average cross. This algorithm ### will go long when the 15 crosses above the 30 and will liquidate when the 15 crosses ### back below the 30. ### </summary> ### <meta name="tag" content="warmup" /> ### <meta name="tag" content="crypto" /> ### <meta name="tag" content="indicators" /> ### <meta name="tag" content="indicator classes" /> ### <meta name="tag" content="moving average cross" /> ### <meta name="tag" content="strategy example" /> class CryptoWarmupMovingAverageCross(QCAlgorithm): def Initialize(self): '''Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.''' self.SetStartDate(2016, 01, 01) #Set Start Date self.SetEndDate(2017, 10, 19) #Set End Date self.SetCash(10000) #Set Strategy Cash # Set brokerage we are using: GDAX for cryptos self.SetBrokerageModel(BrokerageName.GDAX, AccountType.Cash) # Set crypto to BTC at 1 hour resolution self.AddCrypto("BTCUSD", Resolution.Daily) # Define windows in days for EMA fast_period = 15 slow_period = 70 # create a fast 12 day exponential moving average at daily resolution self.fast_btc = self.EMA("BTCUSD", fast_period, Resolution.Daily) # create a slow 27 day exponential moving average at daily resolution self.slow_btc = self.EMA("BTCUSD", slow_period, Resolution.Daily) # "slow_period + 1" because rolling window waits for one to fall off the back to be considered ready # History method returns a dict with a pandas.DataFrame history = self.History(["BTCUSD"], slow_period + 1) # Prints out the head & tail of the dataframe in Log; disabled #self.Log(str(history.loc["BTCUSD"].head())) #self.Log(str(history.loc["BTCUSD"].tail())) # Populate warmup data for index, row in history.loc["BTCUSD"].iterrows(): self.fast_btc.Update(index, row["close"]) self.slow_btc.Update(index, row["close"]) # Log # Log warmup status self.Log("FAST {0} READY. Samples: {1}".format("IS" if self.fast_btc.IsReady else "IS NOT", self.fast_btc.Samples)) self.Log("SLOW {0} READY. Samples: {1}".format("IS" if self.slow_btc.IsReady else "IS NOT", self.slow_btc.Samples)) self.previous = None def OnData(self, data): '''OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.''' # a couple things to notice in this method: # 1. We never need to 'update' our indicators with the data, the engine takes care of this for us # 2. We can use indicators directly in math expressions # 3. We can easily plot many indicators at the same time # wait for our slow ema to fully initialize if not self.slow_btc.IsReady: return # only once per day if self.previous is not None and self.previous.date() == self.Time.date(): return # define a small tolerance on our checks to avoid bouncing tolerance = 0.00015; # Determine number of BTC held holdings = self.Portfolio["BTCUSD"].Quantity # Log stats self.Log("Holding {} BTC".format(str(holdings))) self.Log("BTC held worth {}".format(str(holdings*self.Securities["BTCUSD"].Price))) # we only want to go long if we're currently short or flat if holdings <= 0: # if the fast is greater than the slow, we'll go long if self.fast_btc.Current.Value > self.slow_btc.Current.Value * d.Decimal(1 + tolerance): self.Log("BUY >> {0}".format(self.Securities["BTCUSD"].Price)) self.SetHoldings("BTCUSD", 1) # we only want to liquidate if we're currently long # if the fast is less than the slow we'll liquidate our long if holdings > 0 and self.fast_btc.Current.Value < self.slow_btc.Current.Value: self.Log("SELL >> {0}".format(self.Securities["BTCUSD"].Price)) self.SetHoldings("BTCUSD", 0) self.previous = self.Time