Overall Statistics |
Total Trades 4 Average Win 5.73% Average Loss -17.31% Compounding Annual Return -6.939% Drawdown 28.400% Expectancy -0.113 Net Profit -6.896% Sharpe Ratio -0.243 Loss Rate 33% Win Rate 67% Profit-Loss Ratio 0.33 Alpha 0.121 Beta -8.617 Annual Standard Deviation 0.207 Annual Variance 0.043 Information Ratio -0.339 Tracking Error 0.207 Treynor Ratio 0.006 Total Fees $134.90 |
import numpy as np ### <summary> ### Basic template algorithm simply initializes the date range and cash. This is a skeleton ### framework you can use for designing an algorithm. ### </summary> class BasicTemplateAlgorithm(QCAlgorithm): '''Basic template algorithm simply initializes the date range and cash''' def Initialize(self): '''Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.''' self.SetStartDate(2017,1, 1) #Set Start Date self.SetEndDate(2017,12,31) #Set End Date self.SetCash(100000) #Set Strategy Cash # Set Benchmark SPY self.SetBenchmark("SPY") # Find more symbols here: http://quantconnect.com/data self.AddEquity("BAC") self.Schedule.On(self.DateRules.On(2017, 2, 1), self.TimeRules.At(10, 0), Action(self.buy)) self.Schedule.On(self.DateRules.On(2017, 3, 31), self.TimeRules.At(10, 0), Action(self.sell)) self.Schedule.On(self.DateRules.On(2017, 11, 1), self.TimeRules.At(10, 0), Action(self.buy)) self.Schedule.On(self.DateRules.On(2017, 12, 29), self.TimeRules.At(10, 0), Action(self.sell)) def OnData(self, data): pass def buy(self): # place buy order self.SetHoldings("BAC", 1) def sell(self): # place sell order self.SetHoldings("BAC", -1)