Overall Statistics |
Total Trades 14 Average Win 0.70% Average Loss -0.22% Compounding Annual Return 3.088% Drawdown 4.700% Expectancy 2.013 Net Profit 3.088% Sharpe Ratio 0.367 Probabilistic Sharpe Ratio 22.263% Loss Rate 29% Win Rate 71% Profit-Loss Ratio 3.22 Alpha 0.028 Beta 0.19 Annual Standard Deviation 0.064 Annual Variance 0.004 Information Ratio 0.354 Tracking Error 0.128 Treynor Ratio 0.123 Total Fees $14.00 Estimated Strategy Capacity $21000000.00 Lowest Capacity Asset PEP R735QTJ8XC9X Portfolio Turnover 0.56% |
#region imports from AlgorithmImports import * #endregion from clr import AddReference AddReference("System") AddReference("QuantConnect.Common") AddReference("QuantConnect.Algorithm") AddReference("QuantConnect.Algorithm.Framework") from QuantConnect import * from QuantConnect.Algorithm import * from QuantConnect.Algorithm.Framework import * from QuantConnect.Algorithm.Framework.Portfolio import PortfolioTarget from QuantConnect.Algorithm.Framework.Risk import RiskManagementModel class TrailingStopRiskManagementModel(RiskManagementModel): '''Provides an implementation of IRiskManagementModel that limits the maximum possible loss measured from the highest unrealized profit''' def __init__(self, maximumDrawdownPercent = 0.08): '''Initializes a new instance of the TrailingStopRiskManagementModel class Args: maximumDrawdownPercent: The maximum percentage drawdown allowed for algorithm portfolio compared with the highest unrealized profit, defaults to 5% drawdown''' self.maximumDrawdownPercent = -abs(maximumDrawdownPercent) self.trailingHighs = dict() self.lastDay = -1 self.percentGain = 0.005 def ManageRisk(self, algorithm, targets): '''Manages the algorithm's risk at each time step Args: algorithm: The algorithm instance targets: The current portfolio targets to be assessed for risk''' if algorithm.Time.day == self.lastDay: return [] self.lastDay = algorithm.Time.day riskAdjustedTargets = list() for kvp in algorithm.Securities: symbol = kvp.Key security = kvp.Value percentChange = algorithm.Securities[symbol].Holdings.UnrealizedProfitPercent / 0.01 # Add newly invested securities if symbol not in self.trailingHighs: self.trailingHighs[symbol] = security.Close # Set to average holding cost continue # Remove if not invested if not security.Invested and symbol in self.trailingHighs: try: self.trailingHighs.pop(symbol, None) except: continue continue if percentChange.is_integer() and percentChange > 0: self.trailingHighs[symbol] = security.Close # Check for new highs and update - set to tradebar high # if self.trailingHighs[symbol] < security.High: # self.trailingHighs[symbol] = security.High # continue # Check for securities past the drawdown limit securityHigh = self.trailingHighs[symbol] if securityHigh == 0: riskAdjustedTargets.append(PortfolioTarget(symbol, 0)) continue drawdown = (security.Low / securityHigh) - 1 if drawdown < self.maximumDrawdownPercent: # liquidate riskAdjustedTargets.append(PortfolioTarget(symbol, 0)) return riskAdjustedTargets
#region imports from AlgorithmImports import * #endregion ## SIMON LesFlex June 2021 ## ## Modified by Vladimir from QuantConnect.Python import PythonQuandl ### Simon LesFlex June 2021 ### ### Key Short—Term Economic Indicators. The Key Economic Indicators (KEI) database contains monthly and quarterly statistics ### (and associated statistical methodological information) for the 33 OECD member and for a selection of non—member countries ### on a wide variety of economic indicators, namely: quarterly national accounts, industrial production, composite leading indicators, ### business tendency and consumer opinion surveys, retail trade, consumer and producer prices, hourly earnings, employment/unemployment, ### interest rates, monetary aggregates, exchange rates, international trade and balance of payments. Indicators have been prepared by national statistical ### agencies primarily to meet the requirements of users within their own country. In most instances, the indicators are compiled in accordance with ### international statistical guidelines and recommendations. However, national practices may depart from these guidelines, and these departures may ### impact on comparability between countries. There is an on—going process of review and revision of the contents of the database in order to maximise ### the relevance of the database for short—term economic analysis. ### For more information see: http://stats.oecd.org/OECDStat_Metadata/ShowMetadata.ashx?Dataset=KEI&Lang=en ### Reference Data Set: https://www.quandl.com/data/OECD/KEI_LOLITOAA_OECDE_ST_M-Leading-indicator-amplitude-adjusted-OECD-Europe-Level-ratio-or-index-Monthly ## keihist = 1400 import numpy as np class QuandlImporterAlgorithm(QCAlgorithm): def Initialize(self): self.quandlCode = "OECD/KEI_LOLITOAA_OECDE_ST_M" ## Optional argument - personal token necessary for restricted dataset #Quandl.SetAuthCode("PrzwuZR28Wqegvv1sdJ7") self.SetBrokerageModel(BrokerageName.AlphaStreams) self.SetStartDate(2018, 1, 1) self.SetEndDate(2019, 1, 1) self.SetCash(25000) #Set Strategy Cash self.SetWarmup(100) self.SetBenchmark("SPY") self.init = True self.kei = self.AddData(QuandlCustomColumns, self.quandlCode, Resolution.Daily, TimeZones.NewYork).Symbol self.sma = self.SMA(self.kei, 1) self.mom = self.MOMP(self.kei, 2) self.XLFsector_symbolDataBySymbol = {} self.XLEsector_symbolDataBySymbol = {} self.XLBsector_symbolDataBySymbol = {} self.XLIsector_symbolDataBySymbol = {} self.XLYsector_symbolDataBySymbol = {} self.XLPsector_symbolDataBySymbol = {} self.XLUsector_symbolDataBySymbol = {} self.XLKsector_symbolDataBySymbol = {} self.XLVsector_symbolDataBySymbol = {} self.XLCsector_symbolDataBySymbol = {} #self.AddRiskManagement(TrailingStopRiskManagementModel(0.05)) #self.SPY = self.AddEquity('SPY', Resolution.Daily).Symbol self.stock = self.AddEquity('QQQ', Resolution.Hour).Symbol self.bond = self.AddEquity('TLT', Resolution.Hour).Symbol self.vix = self.AddEquity('VIX', Resolution.Minute).Symbol self.XLF = self.AddEquity('XLF', Resolution.Hour).Symbol self.XLE = self.AddEquity('XLE', Resolution.Hour).Symbol self.XLB = self.AddEquity('XLB', Resolution.Hour).Symbol self.XLI = self.AddEquity('XLI', Resolution.Hour).Symbol self.XLY = self.AddEquity('XLY', Resolution.Hour).Symbol self.XLP = self.AddEquity('XLP', Resolution.Hour).Symbol self.XLU = self.AddEquity('XLU', Resolution.Hour).Symbol self.XLK = self.AddEquity('XLK', Resolution.Hour).Symbol self.XLV = self.AddEquity('XLV', Resolution.Hour).Symbol self.XLC = self.AddEquity('XLC', Resolution.Hour).Symbol #Stocks in Sectors self.XLFsector = ["JPM","BAC","BRK.B"] self.XLEsector = ["XOM","CVX"] self.XLBsector = ["LIN","SHW","APD"] self.XLIsector = ["HON","UNP","UPS"] self.XLYsector = ["AMZN","TSLA","HD"] self.XLPsector = ["PG","KO","PEP","WMT"] self.XLUsector = ["NEE","DUK","SO"] self.XLKsector = ["APPL","MSFT","NVDA"] self.XLVsector = ["JNJ","PFE","UNH"] self.XLCsector = ["FB", "GOOG", "DIS"] self.XLREsector = ["AMT","PLD","CCI","EQIX"] #Strategy strat = "self.Securities[symbol].Close < symbolData.high.Current.Value" # symbol_list = ['XLC', 'XLE', 'XLU', 'XLI', 'XLB', 'XLK', 'XLP', 'XLY', 'XLF', 'XLV'] #self.symbols = [self.AddEquity(symbol, Resolution.Minute).Symbol for symbol in symbol_list] for symbol in self.XLFsector: self.AddEquity(symbol, Resolution.Hour) ema10 = self.EMA(symbol, 10, Resolution.Hour, Field.Close) sma200 = self.SMA(symbol, 200, Resolution.Daily, Field.Close) sma7 = self.SMA(symbol, 7, Resolution.Hour, Field.Close) sma20 = self.SMA(symbol, 20, Resolution.Daily, Field.Close) sma50 = self.SMA(symbol, 50, Resolution.Daily, Field.Close) ema20 = self.EMA(symbol, 20, Resolution.Hour, Field.Close) ema50 = self.EMA(symbol, 50, Resolution.Hour, Field.Close) rsi = self.RSI(symbol, 14, Resolution.Daily) wilr = self.WILR(symbol, 14, Resolution.Daily) wilr_fast = self.WILR(symbol, 10, Resolution.Daily) high = self.MAX(symbol, 5, Resolution.Daily, Field.High) midhigh = self.MAX(symbol, 3, Resolution.Daily, Field.High) low = self.MIN(symbol, 5, Resolution.Daily, Field.Low) stoplow = self.MIN(symbol, 20, Resolution.Daily, Field.Low) symbolData = SymbolData(symbol, sma7, ema10, sma20, sma200, sma50, ema20, rsi, wilr, wilr_fast, high, midhigh, low, stoplow) self.XLFsector_symbolDataBySymbol[symbol] = symbolData for symbol in self.XLEsector: self.AddEquity(symbol, Resolution.Hour) ema10 = self.EMA(symbol, 10, Resolution.Hour, Field.Close) sma200 = self.SMA(symbol, 200, Resolution.Daily, Field.Close) sma7 = self.SMA(symbol, 7, Resolution.Hour, Field.Close) sma20 = self.SMA(symbol, 20, Resolution.Daily, Field.Close) sma50 = self.SMA(symbol, 50, Resolution.Daily, Field.Close) ema20 = self.EMA(symbol, 20, Resolution.Hour, Field.Close) ema50 = self.EMA(symbol, 50, Resolution.Hour, Field.Close) rsi = self.RSI(symbol, 14, Resolution.Daily) wilr = self.WILR(symbol, 14, Resolution.Daily) wilr_fast = self.WILR(symbol, 10, Resolution.Daily) high = self.MAX(symbol, 5, Resolution.Daily, Field.High) midhigh = self.MAX(symbol, 3, Resolution.Daily, Field.High) low = self.MIN(symbol, 5, Resolution.Daily, Field.Low) stoplow = self.MIN(symbol, 20, Resolution.Daily, Field.Low) symbolData = SymbolData(symbol, sma7, ema10, sma20, sma200, sma50, ema20, rsi, wilr, wilr_fast, high, midhigh, low, stoplow) self.XLEsector_symbolDataBySymbol[symbol] = symbolData for symbol in self.XLBsector: self.AddEquity(symbol, Resolution.Hour) ema10 = self.EMA(symbol, 10, Resolution.Hour, Field.Close) sma200 = self.SMA(symbol, 200, Resolution.Daily, Field.Close) sma7 = self.SMA(symbol, 7, Resolution.Hour, Field.Close) sma20 = self.SMA(symbol, 20, Resolution.Daily, Field.Close) sma50 = self.SMA(symbol, 50, Resolution.Daily, Field.Close) ema20 = self.EMA(symbol, 20, Resolution.Hour, Field.Close) ema50 = self.EMA(symbol, 50, Resolution.Hour, Field.Close) rsi = self.RSI(symbol, 14, Resolution.Daily) wilr = self.WILR(symbol, 14, Resolution.Daily) wilr_fast = self.WILR(symbol, 10, Resolution.Daily) high = self.MAX(symbol, 5, Resolution.Daily, Field.High) midhigh = self.MAX(symbol, 3, Resolution.Daily, Field.High) low = self.MIN(symbol, 5, Resolution.Daily, Field.Low) stoplow = self.MIN(symbol, 20, Resolution.Daily, Field.Low) symbolData = SymbolData(symbol, sma7, ema10, sma20, sma200, sma50, ema20, rsi, wilr, wilr_fast, high, midhigh, low, stoplow) self.XLBsector_symbolDataBySymbol[symbol] = symbolData for symbol in self.XLIsector: self.AddEquity(symbol, Resolution.Hour) ema10 = self.EMA(symbol, 10, Resolution.Hour, Field.Close) sma200 = self.SMA(symbol, 200, Resolution.Daily, Field.Close) sma7 = self.SMA(symbol, 7, Resolution.Hour, Field.Close) sma20 = self.SMA(symbol, 20, Resolution.Daily, Field.Close) sma50 = self.SMA(symbol, 50, Resolution.Daily, Field.Close) ema20 = self.EMA(symbol, 20, Resolution.Hour, Field.Close) ema50 = self.EMA(symbol, 50, Resolution.Hour, Field.Close) rsi = self.RSI(symbol, 14, Resolution.Daily) wilr = self.WILR(symbol, 14, Resolution.Daily) wilr_fast = self.WILR(symbol, 10, Resolution.Daily) high = self.MAX(symbol, 5, Resolution.Daily, Field.High) midhigh = self.MAX(symbol, 3, Resolution.Daily, Field.High) low = self.MIN(symbol, 5, Resolution.Daily, Field.Low) stoplow = self.MIN(symbol, 20, Resolution.Daily, Field.Low) symbolData = SymbolData(symbol, sma7, ema10, sma20, sma200, sma50, ema20, rsi, wilr, wilr_fast, high, midhigh, low, stoplow) self.XLIsector_symbolDataBySymbol[symbol] = symbolData for symbol in self.XLYsector: self.AddEquity(symbol, Resolution.Hour) ema10 = self.EMA(symbol, 10, Resolution.Hour, Field.Close) sma200 = self.SMA(symbol, 200, Resolution.Daily, Field.Close) sma7 = self.SMA(symbol, 7, Resolution.Hour, Field.Close) sma20 = self.SMA(symbol, 20, Resolution.Daily, Field.Close) sma50 = self.SMA(symbol, 50, Resolution.Daily, Field.Close) ema20 = self.EMA(symbol, 20, Resolution.Hour, Field.Close) ema50 = self.EMA(symbol, 50, Resolution.Hour, Field.Close) rsi = self.RSI(symbol, 14, Resolution.Daily) wilr = self.WILR(symbol, 14, Resolution.Daily) wilr_fast = self.WILR(symbol, 10, Resolution.Daily) high = self.MAX(symbol, 5, Resolution.Daily, Field.High) midhigh = self.MAX(symbol, 3, Resolution.Daily, Field.High) low = self.MIN(symbol, 5, Resolution.Daily, Field.Low) stoplow = self.MIN(symbol, 20, Resolution.Daily, Field.Low) symbolData = SymbolData(symbol, sma7, ema10, sma20, sma200, sma50, ema20, rsi, wilr, wilr_fast, high, midhigh, low, stoplow) self.XLYsector_symbolDataBySymbol[symbol] = symbolData for symbol in self.XLPsector: self.AddEquity(symbol, Resolution.Hour) ema10 = self.EMA(symbol, 10, Resolution.Hour, Field.Close) sma200 = self.SMA(symbol, 200, Resolution.Daily, Field.Close) sma7 = self.SMA(symbol, 7, Resolution.Hour, Field.Close) sma20 = self.SMA(symbol, 20, Resolution.Daily, Field.Close) sma50 = self.SMA(symbol, 50, Resolution.Daily, Field.Close) ema20 = self.EMA(symbol, 20, Resolution.Hour, Field.Close) ema50 = self.EMA(symbol, 50, Resolution.Hour, Field.Close) rsi = self.RSI(symbol, 14, Resolution.Daily) wilr = self.WILR(symbol, 14, Resolution.Daily) wilr_fast = self.WILR(symbol, 10, Resolution.Daily) high = self.MAX(symbol, 5, Resolution.Daily, Field.High) midhigh = self.MAX(symbol, 3, Resolution.Daily, Field.High) low = self.MIN(symbol, 5, Resolution.Daily, Field.Low) stoplow = self.MIN(symbol, 20, Resolution.Daily, Field.Low) symbolData = SymbolData(symbol, sma7, ema10, sma20, sma200, sma50, ema20, rsi, wilr, wilr_fast, high, midhigh, low, stoplow) self.XLPsector_symbolDataBySymbol[symbol] = symbolData for symbol in self.XLUsector: self.AddEquity(symbol, Resolution.Hour) ema10 = self.EMA(symbol, 10, Resolution.Hour, Field.Close) sma200 = self.SMA(symbol, 200, Resolution.Daily, Field.Close) sma7 = self.SMA(symbol, 7, Resolution.Hour, Field.Close) sma20 = self.SMA(symbol, 20, Resolution.Daily, Field.Close) sma50 = self.SMA(symbol, 50, Resolution.Daily, Field.Close) ema20 = self.EMA(symbol, 20, Resolution.Hour, Field.Close) ema50 = self.EMA(symbol, 50, Resolution.Hour, Field.Close) rsi = self.RSI(symbol, 14, Resolution.Daily) wilr = self.WILR(symbol, 14, Resolution.Daily) wilr_fast = self.WILR(symbol, 10, Resolution.Daily) high = self.MAX(symbol, 5, Resolution.Daily, Field.High) midhigh = self.MAX(symbol, 3, Resolution.Daily, Field.High) low = self.MIN(symbol, 5, Resolution.Daily, Field.Low) stoplow = self.MIN(symbol, 20, Resolution.Daily, Field.Low) symbolData = SymbolData(symbol, sma7, ema10, sma20, sma200, sma50, ema20, rsi, wilr, wilr_fast, high, midhigh, low, stoplow) self.XLUsector_symbolDataBySymbol[symbol] = symbolData for symbol in self.XLKsector: self.AddEquity(symbol, Resolution.Hour) ema10 = self.EMA(symbol, 10, Resolution.Hour, Field.Close) sma200 = self.SMA(symbol, 200, Resolution.Daily, Field.Close) sma7 = self.SMA(symbol, 7, Resolution.Hour, Field.Close) sma20 = self.SMA(symbol, 20, Resolution.Daily, Field.Close) sma50 = self.SMA(symbol, 50, Resolution.Daily, Field.Close) ema20 = self.EMA(symbol, 20, Resolution.Hour, Field.Close) ema50 = self.EMA(symbol, 50, Resolution.Hour, Field.Close) rsi = self.RSI(symbol, 14, Resolution.Daily) wilr = self.WILR(symbol, 14, Resolution.Daily) wilr_fast = self.WILR(symbol, 10, Resolution.Daily) high = self.MAX(symbol, 5, Resolution.Daily, Field.High) midhigh = self.MAX(symbol, 3, Resolution.Daily, Field.High) low = self.MIN(symbol, 5, Resolution.Daily, Field.Low) stoplow = self.MIN(symbol, 20, Resolution.Daily, Field.Low) symbolData = SymbolData(symbol, sma7, ema10, sma20, sma200, sma50, ema20, rsi, wilr, wilr_fast, high, midhigh, low, stoplow) self.XLKsector_symbolDataBySymbol[symbol] = symbolData self.Schedule.On(self.DateRules.EveryDay(self.stock), self.TimeRules.AfterMarketOpen(self.stock, 1), self.Rebalance) #self.Schedule.On(self.DateRules.EveryDay(), self.TimeRules.Every(30), self.EveryDayAfterMarketOpen) def Rebalance(self): if self.IsWarmingUp or not self.mom.IsReady or not self.sma.IsReady: return initial_asset = self.stock if self.mom.Current.Value > 0 else self.bond if self.init: #self.SetHoldings(initial_asset, 1) self.init = False keihist = self.History([self.kei], (int(self.GetParameter("keihist")))) #keihist = keihist['Value'].unstack(level=0).dropna() keihistlowt = np.nanpercentile(keihist, 15) keihistmidt = np.nanpercentile(keihist, 50) keihisthight = np.nanpercentile(keihist, 90) kei = self.sma.Current.Value keimom = self.mom.Current.Value if (keimom < 0 and kei < keihistmidt and kei > keihistlowt) and not (self.Securities[self.XLP].Invested): # DECLINE self.Liquidate() self.SetHoldings(self.XLP, .01) for symbol, symbolData in self.XLPsector_symbolDataBySymbol.items(): if not self.Portfolio[symbol].Invested and (self.Securities[symbol].Close > symbolData.sma50.Current.Value): self.SetHoldings(symbol, .2, False, "Buy Signal") for symbol, symbolData in self.XLVsector_symbolDataBySymbol.items(): if not self.Portfolio[symbol].Invested and (self.Securities[symbol].Close > symbolData.sma50.Current.Value): self.SetHoldings(symbol, .2, False, "Buy Signal") #self.SetHoldings(self.bond, .5) self.Debug("STAPLES {0} >> {1}".format(self.XLP, self.Time)) elif (keimom > 0 and kei < keihistlowt) and not (self.Securities[self.XLB].Invested): # RECOVERY self.Liquidate() self.SetHoldings(self.XLB, .01) #XLB for symbol, symbolData in self.XLBsector_symbolDataBySymbol.items(): if not self.Portfolio[symbol].Invested and (self.Securities[symbol].Close > symbolData.sma50.Current.Value): self.SetHoldings(symbol, .2, False, "Buy Signal") #XLY for symbol, symbolData in self.XLYsector_symbolDataBySymbol.items(): if not self.Portfolio[symbol].Invested and (self.Securities[symbol].Close > symbolData.sma50.Current.Value): self.SetHoldings(symbol, .2, False, "Buy Signal") self.Debug("MATERIALS {0} >> {1}".format(self.XLB, self.Time)) elif (keimom > 0 and kei > keihistlowt and kei < keihistmidt) and not (self.Securities[self.XLE].Invested): # EARLY self.Liquidate() self.SetHoldings(self.XLE, .01) #XLF for symbol, symbolData in self.XLFsector_symbolDataBySymbol.items(): if not self.Portfolio[symbol].Invested and (self.Securities[symbol].Close > symbolData.sma50.Current.Value): self.SetHoldings(symbol, .15, False, "Buy Signal") #XLI for symbol, symbolData in self.XLIsector_symbolDataBySymbol.items(): if not self.Portfolio[symbol].Invested and (self.Securities[symbol].Close > symbolData.sma50.Current.Value): self.SetHoldings(symbol, .15, False, "Buy Signal") #XLE for symbol, symbolData in self.XLEsector_symbolDataBySymbol.items(): if not self.Portfolio[symbol].Invested and (self.Securities[symbol].Close > symbolData.sma50.Current.Value): self.SetHoldings(symbol, .15, False, "Buy Signal") self.Debug("ENERGY {0} >> {1}".format(self.XLE, self.Time)) elif (keimom > 0 and kei > keihistmidt and kei < keihisthight) and not (self.Securities[self.XLU].Invested): # REBOUND self.Liquidate() #self.SetHoldings(self.XLK, .5) self.SetHoldings(self.XLU, .01) #XLU for symbol, symbolData in self.XLUsector_symbolDataBySymbol.items(): if not self.Portfolio[symbol].Invested and (self.Securities[symbol].Close > symbolData.sma50.Current.Value): self.SetHoldings(symbol, .2, False, "Buy Signal") #XLK for symbol, symbolData in self.XLKsector_symbolDataBySymbol.items(): if not self.Portfolio[symbol].Invested and (self.Securities[symbol].Close > symbolData.sma50.Current.Value): self.SetHoldings(symbol, .2, False, "Buy Signal") self.Debug("UTILITIES {0} >> {1}".format(self.XLU, self.Time)) elif (keimom < 0 and kei < keihisthight and kei > keihistmidt) and not (self.Securities[self.XLK].Invested): # LATE self.Liquidate() self.SetHoldings(self.XLK, .01) for symbol, symbolData in self.XLKsector_symbolDataBySymbol.items(): if not self.Portfolio[symbol].Invested and (self.Securities[symbol].Close > symbolData.sma50.Current.Value) : self.SetHoldings(symbol, .2, False, "Buy Signal") #self.SetHoldings(self.XLV, .5) for symbol, symbolData in self.XLCsector_symbolDataBySymbol.items(): if not self.Portfolio[symbol].Invested and (self.Securities[symbol].Close > symbolData.sma50.Current.Value) : self.SetHoldings(symbol, .2, False, "Buy Signal") self.Debug("INFO TECH {0} >> {1}".format(self.XLK, self.Time)) elif (keimom < 0 and kei < 100 and not self.Securities[self.bond].Invested): self.Liquidate() #self.SetHoldings(self.bond, 1) self.Plot("LeadInd", "SMA(LeadInd)", self.sma.Current.Value) self.Plot("LeadInd", "THRESHOLD", 100) self.Plot("MOMP", "MOMP(LeadInd)", self.mom.Current.Value) self.Plot("MOMP", "THRESHOLD", 0) # Quandl often doesn't use close columns so need to tell LEAN which is the "value" column. class QuandlCustomColumns(PythonQuandl): def __init__(self): # Define ValueColumnName: cannot be None, Empty or non-existant column name self.ValueColumnName = "Value" class SymbolData: def __init__(self, symbol, sma7, ema10, sma20, sma50, sma200, ema20, rsi, wilr, wilr_fast, high, midhigh, low, stoplow): self.Symbol = symbol self.sma7 = sma7 self.ema10 = ema10 self.sma20 = sma20 self.sma50 = sma50 self.sma200 = sma200 self.ema20 = ema20 self.rsi = rsi self.wilr = wilr self.wilr_fast = wilr_fast self.high = high self.midhigh = midhigh self.low = low self.stoplow = stoplow