Overall Statistics |
Total Trades 6089 Average Win 0.02% Average Loss -0.03% Compounding Annual Return 10.540% Drawdown 25.500% Expectancy 0.323 Net Profit 37.916% Sharpe Ratio 0.665 Loss Rate 25% Win Rate 75% Profit-Loss Ratio 0.77 Alpha 0.217 Beta -9.147 Annual Standard Deviation 0.123 Annual Variance 0.015 Information Ratio 0.544 Tracking Error 0.123 Treynor Ratio -0.009 Total Fees $8096.92 |
# https://quantpedia.com/Screener/Details/26 from QuantConnect.Data.UniverseSelection import * import math import numpy as np import pandas as pd import scipy as sp # ---------------------------------------------------------------- # To do # ---------------------------------------------------------------- # x Rebalance Monthly # x Change weighting of positions to equal weights # x Plot development of Breakpoints over time # - Narrow down to single asset (for testing purposes) # - Add calculation of target price # - Overlay covered call strategy linking strikes with breakpoints # - Overlay LT & ST replication (short put & long call) # - Extend to multiple tickers # - Extend to short leg # ---------------------------------------------------------------- # Some Notes # ---------------------------------------------------------------- # self.lowercase variables are variables defined by oneself # self.Uperrcase variables reference QC API class BooktoMarketAnomaly(QCAlgorithm): def Initialize(self): self.Log('Initializing Backtest') self.Log('_____________________________________________________________________________________________________________________________________') self.SetStartDate(2016, 1, 1) self.SetEndDate(2019, 3, 15) self.SetCash(1000000) self.sorted_by_bm = None self.monthly_rebalance = False # Universe + Settings self.UniverseSettings.Resolution = Resolution.Daily self.AddUniverse(self.CoarseSelectionFunction, self.FineSelectionFunction) # Benchmark self.SetBenchmark("SPY") self.AddEquity("SPY", Resolution.Daily) # Schedule functions # Trigger an event every day a specific symbol is trading --> here monthly self.Schedule.On(self.DateRules.MonthStart("SPY"), self.TimeRules.AfterMarketOpen("SPY"), Action(self.rebalance)) # Plotting # Chart - Master Container for the Chart: breakpPlot = Chart('Fundamentals') breakpPlot.AddSeries(Series('Breakpoint-Min', SeriesType.Line)) breakpPlot.AddSeries(Series('Breakpoint-Max', SeriesType.Line)) self.AddChart(breakpPlot) def CoarseSelectionFunction(self, coarse): if self.monthly_rebalance: # drop stocks which have no fundamental data or have low price self.filtered_coarse = [x.Symbol for x in coarse if (x.HasFundamentalData and x.AdjustedPrice > 5)] else: self.filtered_coarse = [] return self.filtered_coarse def FineSelectionFunction(self, fine): # To calculate the overall breakpoints of a systematic strategy, we need multiple shares (# defined by some cutoff, e.g. top 20% Mcap) # For testing & replication narrow down to < 5 if self.monthly_rebalance: # Filter stocks with positive PB Ratio fine = [x for x in fine if (x.ValuationRatios.PBRatio > 0)] # Calculate the market cap and add the "MarketCap" property to fine universe object for i in fine: i.MarketCap = float(i.EarningReports.BasicAverageShares.ThreeMonths * (i.EarningReports.BasicEPS.TwelveMonths*i.ValuationRatios.PERatio)) # Syntax : sorted(iterable, key, reverse) --> reverse means from highest (expensive) to lowest (cheap) top_market_cap = sorted(fine, key = lambda x: x.MarketCap, reverse=True)[:int(len(fine)*0.2)] # sorted stocks in the top market-cap list by book-to-market ratio -> cheap first # lowest B/M Ratio has lowest 1/(P/B) -> but REVERSE here (!) top_bm = sorted(top_market_cap, key = lambda x: 1 / x.ValuationRatios.PBRatio, reverse=True)[:int(len(top_market_cap)*0.2)] self.sorted_by_bm = [i.Symbol for i in top_bm] top_bm_tickers = [i.SecurityReference.SecuritySymbol for i in top_bm] top_bm_ratios = [i.ValuationRatios.PBRatio for i in top_bm] current_universe = dict(zip(top_bm_tickers, top_bm_ratios)) current_min = min(current_universe.items(), key=lambda x: x[1]) current_max = max(current_universe.items(), key=lambda x: x[1]) # Save cut-off breakpoint for plot self.breakpoint_max = current_max[1] self.breakpoint_min = current_min[1] # calculate the weight with the market cap total_market_cap = np.sum([i.MarketCap for i in top_bm]) self.weights = {} for i in top_bm: self.weights[str(i.Symbol)] = 1/len(self.sorted_by_bm) # Logging self.Log('Current Universe: ') self.Log('# of stocks: ' + str(len(top_bm))) self.Log('Max PB Ratio ' + str(current_max)) self.Log('Min PB Ratio ' + str(current_min)) else: self.sorted_by_bm = [] return self.sorted_by_bm def rebalance(self): # form yearly to monthly rebalance self.monthly_rebalance = True self.Log('Rebalancing on ' + str(self.Time)) def OnData(self, data): if not self.monthly_rebalance: return if self.sorted_by_bm: stocks_invested = [x.Key for x in self.Portfolio if x.Value.Invested] # liquidate stocks not in the trading list for i in stocks_invested: if i not in self.sorted_by_bm: self.Liquidate(i) # goes long stocks with the highest book-to-market ratio for i in self.sorted_by_bm: # Changed this to simple weight +1 for single asset self.SetHoldings(i, self.weights[str(i)]) # Later in your OnData(self, data): self.Plot('Fundamentals', 'Breakpoint Min', self.breakpoint_min) self.Plot('Fundamentals', 'Breakpoint Max', self.breakpoint_max) self.monthly_rebalance = False