Overall Statistics |
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio 0 Tracking Error 0 Treynor Ratio 0 Total Fees $0.00 |
using System; using System.Collections.Concurrent; using System.Linq; using QuantConnect.Data.Market; using QuantConnect.Data.UniverseSelection; using QuantConnect.Indicators; namespace QuantConnect { /// <summary> /// In this algorithm we demonstrate how to perform some technical analysis as /// part of your coarse fundamental universe selection /// </summary> public class EmaCrossUniverseSelectionAlgorithm : QCAlgorithm { // tolerance to prevent bouncing const decimal Tolerance = 0.001m; private const int Count = 10; // use Buffer+Count to leave a little in cash private const decimal TargetPercent = 0.1m; private SecurityChanges _changes = SecurityChanges.None; // holds our coarse fundamental indicators by symbol private readonly ConcurrentDictionary<Symbol, SelectionData> _averages = new ConcurrentDictionary<Symbol, SelectionData>(); // class used to improve readability of the coarse selection function private class SelectionData { public readonly ExponentialMovingAverage Fast; public SelectionData(QCAlgorithm algorithm, string symbol) { Fast = new ExponentialMovingAverage(10); algorithm.Log(String.Format("Initializing: {0}", symbol)); var history = algorithm.History(symbol, 11); foreach (var tradeBar in history) { algorithm.Log(String.Format("Updating: {0}", symbol)); Fast.Update(tradeBar.EndTime, tradeBar.Close); } } // updates the fast and slow indicators, returning true when they're both ready public bool Update(DateTime time, decimal value) { return Fast.Update(time, value); } } /// <summary> /// Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized. /// </summary> public override void Initialize() { UniverseSettings.Leverage = 2.0m; UniverseSettings.Resolution = Resolution.Daily; SetStartDate(2010, 01, 01); SetEndDate(2010, 04, 01); SetCash(1000*1000); SetBrokerageModel(BrokerageName.TradierBrokerage); SetSecurityInitializer(new CustomSecurityInitializer(BrokerageModel, DataNormalizationMode.Raw)); AddUniverse(coarse => { return (from cf in coarse // grab th SelectionData instance for this symbol let avg = _averages.GetOrAdd(cf.Symbol, sym => new SelectionData(this, cf.Symbol)) // Update returns true when the indicators are ready, so don't accept until they are where avg.Update(cf.EndTime, cf.Price) // only pick symbols who have their fast ema over their slow ema where avg.Fast > 0.0m // prefer symbols with a larger delta by percentage between the two averages orderby avg.Fast ascending // we only need to return the symbol and return 'Count' symbols select cf.Symbol).Take(Count); }); } /// <summary> /// OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here. /// </summary> /// <param name="data">TradeBars dictionary object keyed by symbol containing the stock data</param> public void OnData(TradeBars data) { if (_changes == SecurityChanges.None) return; // liquidate securities removed from our universe foreach (var security in _changes.RemovedSecurities) { if (security.Invested) { Liquidate(security.Symbol); } } // we'll simply go long each security we added to the universe foreach (var security in _changes.AddedSecurities) { SetHoldings(security.Symbol, TargetPercent); } } /// <summary> /// Event fired each time the we add/remove securities from the data feed /// </summary> /// <param name="changes">Object containing AddedSecurities and RemovedSecurities</param> public override void OnSecuritiesChanged(SecurityChanges changes) { _changes = changes; } } }
using QuantConnect.Orders.Slippage; namespace QuantConnect { class CustomSecurityInitializer : BrokerageModelSecurityInitializer { private readonly DataNormalizationMode _dataNormalizationMode; /// <summary> /// Initializes a new instance of the <see cref="CustomSecurityInitializer"/> class /// with the specified normalization mode /// </summary> /// <param name="brokerageModel">The brokerage model used to get fill/fee/slippage/settlement models</param> /// <param name="dataNormalizationMode">The desired data normalization mode</param> public CustomSecurityInitializer(IBrokerageModel brokerageModel, DataNormalizationMode dataNormalizationMode) : base(brokerageModel) { _dataNormalizationMode = dataNormalizationMode; } /// <summary> /// Initializes the specified security by setting up the models /// </summary> /// <param name="security">The security to be initialized</param> public override void Initialize(Security security) { // first call the default implementation base.Initialize(security); // now apply our data normalization mode security.SetDataNormalizationMode(_dataNormalizationMode); security.SlippageModel = new ConstantSlippageModel(0.001m); } } }