Overall Statistics |
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio 1.197 Tracking Error 0.156 Treynor Ratio 0 Total Fees $0.00 |
import numpy as np import pandas as pd from clr import AddReference AddReference("System") AddReference("QuantConnect.Algorithm") AddReference("QuantConnect.Common") from System import * from QuantConnect import * from QuantConnect.Algorithm import * from QuantConnect.Data import * from datetime import timedelta from System.Collections.Generic import List from QuantConnect.Data.UniverseSelection import * class QualityMomentumModel(QCAlgorithm): def __init__(self): # Set target number of securities to hold self.TARGET_SECURITIES = 5 #trend following filter self.TF_LOOKBACK = 200 self.TF_CURRENT_LOOKBACK = 20 self.TF_up = 0 #determining momentum self.MOMENTUM_LOOKBACK_DAYS = 126 #how many days to lookback self.MOMENTUM_SKIP_DAYS = 10 #how many days to skip self.overall_lookback = (self.MOMENTUM_LOOKBACK_DAYS + self.MOMENTUM_SKIP_DAYS) def Initialize(self): self.SetStartDate(2010, 1, 1) # Set Start Date self.SetEndDate(2010, 2, 1) self.SetCash(1000) # Set Strategy Cash self.spy = self.AddEquity("SPY", Resolution.Minute) #add SPY to use for trends #schedule function for making trades self.Schedule.On(self.DateRules.EveryDay("SPY"), self.TimeRules.AfterMarketOpen("SPY", 30), Action(self.trade)) self.Schedule.On(self.DateRules.EveryDay("SPY"), self.TimeRules.BeforeMarketClose("SPY", 30), Action(self.trade)) #50 Day moving average of SPY self.spy_ma_fast = self.SMA("SPY", 50) #200 Day moving average of SPY self.spy_ma_slow = self.SMA("SPY", 200) self.trend_up = self.spy_ma_fast >= self.spy_ma_slow if self.spy_ma_fast >= self.spy_ma_slow: self.TF_up = 1 self.UniverseSettings.Resolution = Resolution.Minute #update the universe every minute self.UniverseSettings.Resolution = Resolution.Daily self.AddUniverse(self.CoarseSelectionFunction, self.FineSelectionFunction) def CoarseSelectionFunction(self, coarse): '''Drop securities which have no fundamental data or have too low prices. Select those with highest by dollar volume''' selected = [x for x in coarse if (x.HasFundamentalData) and (float(x.Price) > 20)] filtered = sorted(selected, key=lambda x: x.DollarVolume, reverse=True) return [x.Symbol for x in filtered[:2000]] def FineSelectionFunction(self, fine): if self.TF_up == 1: quality = [x for x in fine if x.ValuationRatios.FCFYield and x.ValuationRatios.CashReturn and x.OperationRatios.ROIC and x.OperationRatios.LongTermDebtEquityRatio.NineMonths and x.ValuationRatios.CashReturn and x.ValuationRatios.FCFYield and x.OperationRatios.ROIC and x.OperationRatios.LongTermDebtEquityRatio] self.Plot("Stocks", "Len", len(quality)) self.returns_overall = sorted(quality, key = lambda f: f.OperationRatios.RevenueGrowth.overall_lookback) self.returns_recent = sorted(quality, key = lambda f: f.OperationRatios.RevenueGrowth.MOMENTUM_SKIP_DAYS) self.momentum = sorted(quality, key = lambda f: self.returns_overall - self.returns_recent) self.top_quality = sorted(quality, key = lambda f: f.OperationRatios.ROE.OneMonth) TQ2 = [x[0] for x in self.top_quality] self.stocks_to_hold = [x.symbol for x in TQ2[:self.TARGET_SECURITIES]] return self.stocks_to_hold def trade(self): for i in self.Portfolio.Values: if (i.Invested) and (i not in self.stocks_to_hold): self.Liquidate(i.Symbol) for i in self.stocks_to_hold: self.SetHoldings(i, 1.0 / self.TARGET_SECURITIES )