Overall Statistics |
Total Trades 1842 Average Win 0.06% Average Loss -0.02% Compounding Annual Return -1.908% Drawdown 5.700% Expectancy -0.254 Net Profit -5.619% Sharpe Ratio -2.327 Probabilistic Sharpe Ratio 0.000% Loss Rate 79% Win Rate 21% Profit-Loss Ratio 2.54 Alpha -0.016 Beta 0.003 Annual Standard Deviation 0.007 Annual Variance 0 Information Ratio -0.74 Tracking Error 0.207 Treynor Ratio -6.253 Total Fees $1842.00 |
import math class LongStraddleAlgorithm(QCAlgorithm): def Initialize(self): self.SetStartDate(2018, 1, 1) self.SetEndDate(2020, 12, 31) self.SetCash(100000) self.equity = self.AddEquity("SPY", Resolution.Minute) self.equity.SetDataNormalizationMode(DataNormalizationMode.Raw) self.SetSecurityInitializer(lambda x: x.SetMarketPrice(self.GetLastKnownPrice(x))) self.underlyingsymbol = self.equity.Symbol self.SetBenchmark(self.underlyingsymbol) self.Schedule.On(self.DateRules.EveryDay(),self.TimeRules.At(15,30),self.close_pos) self.lower_call_cost = 0 self.lower_put_cost = 0 self.higher_call_cost = 0 self.higher_put_cost = 0 def OnData(self,slice): if not self.Portfolio.Invested: contracts = self.OptionChainProvider.GetOptionContractList(self.underlyingsymbol, self.Time.date()) if self.Time.hour == 11 and self.Time.minute == 00: self.TradeOptions(contracts) if self.Portfolio.Invested and self.Time.hour >= 11: #if price of underlying goes beyond the range of (- 2%) it will liquidate '''if self.Securities[self.lower_put.Value].Price < 0.9 * self.lower_put_cost: self.Liquidate(self.lower_put.Value) self.Log("Lower Put Liquidated On " + str(self.Time)) if self.Securities[self.higher_call.Value].Price < 0.9 * self.higher_call_cost: self.Liquidate(self.higher_call.Value) self.Log("Higher Call Liquidated On " + str(self.Time)) if self.Securities[self.higher_put.Value].Price > 1.1 * self.higher_put_cost: self.Liquidate(self.higher_put.Value) self.Log("Higher Put Liquidated On " + str(self.Time)) if self.Securities[self.lower_call.Value].Price > 1.1 * self.lower_call_cost: self.Liquidate(self.lower_call.Value) self.Log("Lower Call Liquidated On " + str(self.Time))''' if self.Portfolio.Invested and self.Time.hour >= 11 and self.Time.minute % 30 == 0 : #if price of underlying goes beyond the range of (- 2%) it will liquidate if self.Securities[self.lower_put.Value].Price >= 1.1 * self.lower_put_cost: self.Liquidate(self.lower_put.Value) self.Log("Lower Put Liquidated On " + str(self.Time)) if self.Securities[self.higher_call.Value].Price >= 1.1 * self.higher_call_cost: self.Liquidate(self.higher_call.Value) self.Log("Higher Call Liquidated On " + str(self.Time)) if self.Securities[self.higher_put.Value].Price < 0.9 * self.higher_put_cost: self.Liquidate(self.higher_put.Value) self.Log("Higher Put Liquidated On " + str(self.Time)) if self.Securities[self.lower_call.Value].Price < 0.9 * self.lower_call_cost: self.Liquidate(self.lower_call.Value) self.Log("Lower Call Liquidated On " + str(self.Time)) def TradeOptions(self,contracts): # run CoarseSelection method and get a list of contracts expire within 0 to 8 days from now on # and the strike price between rank -1 to rank 1 filtered_contracts = self.CoarseSelection(self.underlyingsymbol, contracts, -1, 1, 0, 2) if filtered_contracts is None: return expiry = sorted( filtered_contracts,key = lambda x: (x.ID.Date.date() - self.Time.date()).days )[0].ID.Date # filter the call options from the contracts expire on that date call = [i for i in filtered_contracts if i.ID.Date == expiry and i.ID.OptionRight == 0] put = [i for i in filtered_contracts if i.ID.Date == expiry and i.ID.OptionRight == 1 ] # sorted the contracts according to their ATM strike prices call_contracts = sorted( call , key = lambda x : x.ID.StrikePrice ) put_contracts = sorted( put , key = lambda x : x.ID.StrikePrice ) if len(call_contracts) > 0 and len(put_contracts) > 0 : self.higher_call = call_contracts[-1] self.higher_put = put_contracts[0] try: self.lower_call = call_contracts[-1*math.floor(len(put_contracts)/4)] self.lower_put = put_contracts[math.floor(len(put_contracts)/4)] except: self.lower_call = sorted(call, key = lambda x : abs(x.ID.StrikePrice - self.Securities[self.underlyingsymbol].Price))[0] self.higher_put = sorted(put, key = lambda x : abs(x.ID.StrikePrice - self.Securities[self.underlyingsymbol].Price))[0] self.AddOptionContract(self.lower_call, Resolution.Minute) self.AddOptionContract(self.higher_call, Resolution.Minute) self.AddOptionContract(self.lower_put, Resolution.Minute) self.AddOptionContract(self.higher_put, Resolution.Minute) self.Sell(self.lower_put.Value ,1) self.Sell(self.higher_call.Value ,1) self.Buy(self.higher_put.Value ,1) self.Buy(self.lower_call.Value ,1) self.lower_call_cost = self.Securities[self.lower_call.Value].Price self.lower_put_cost = self.Securities[self.lower_put.Value].Price self.higher_call_cost = self.Securities[self.higher_call.Value].Price self.higher_put_cost = self.Securities[self.higher_put.Value].Price def CoarseSelection(self, underlyingsymbol, symbol_list, min_strike_rank, max_strike_rank, min_expiry, max_expiry): # fitler the contracts based on the expiry range contract_list = [i for i in symbol_list if min_expiry < (i.ID.Date.date() - self.Time.date()).days < max_expiry] # find the strike price of ATM option if len(contract_list) <= 0: return atm_strike = sorted(contract_list, key = lambda x: abs(x.ID.StrikePrice - self.Securities[underlyingsymbol].Price))[0].ID.StrikePrice strike_list = sorted(set([i.ID.StrikePrice for i in contract_list])) # find the index of ATM strike in the sorted strike list atm_strike_rank = strike_list.index(atm_strike) try: min_strike = strike_list[atm_strike_rank + min_strike_rank] max_strike = strike_list[atm_strike_rank + max_strike_rank] except: min_strike = strike_list[0] max_strike = strike_list[-1] # filter the contracts based on the range of the strike price rank filtered_contracts = [i for i in contract_list if i.ID.StrikePrice >= min_strike and i.ID.StrikePrice <= max_strike] return filtered_contracts def close_pos(self): if self.Portfolio.Invested: self.Liquidate()