Overall Statistics |
Total Trades 544 Average Win 3.92% Average Loss -1.52% Compounding Annual Return 57.894% Drawdown 47.700% Expectancy 1.453 Net Profit 38641.854% Sharpe Ratio 1.639 Probabilistic Sharpe Ratio 89.284% Loss Rate 31% Win Rate 69% Profit-Loss Ratio 2.58 Alpha 0.549 Beta -0.13 Annual Standard Deviation 0.327 Annual Variance 0.107 Information Ratio 1.126 Tracking Error 0.389 Treynor Ratio -4.115 Total Fees $479180.08 |
''' From: https://www.quantconnect.com/forum/discussion/10246/intersection-of-roc-comparison-using-out-day-approach/p1/comment-29470 Intersection of ROC comparison using OUT_DAY approach by Vladimir v1.3 (with dynamic selector for fundamental factors and momentum) inspired by Peter Guenther, Tentor Testivis, Dan Whitnable, Thomas Chang, Miko M, Leandro Maia Leandro Maia setup modified by Vladimir https://www.quantconnect.com/forum/discussion/9632/amazing-returns-superior-stock-selection-strategy-superior-in-amp-out-strategy/p2/comment-29437 ''' from QuantConnect.Data.UniverseSelection import * import numpy as np import pandas as pd # -------------------------------------------------------------------------------------------------------- BONDS = ['TMF']; VOLA = 126; BASE_RET = 85; STK_MOM = 126; N_COARSE = 100; N_FACTOR = 20; N_MOM = 5; LEV = 1.00; # -------------------------------------------------------------------------------------------------------- class Fundamental_Factors_Momentum_ROC_Comparison_OUT_DAY(QCAlgorithm): def Initialize(self): self.SetStartDate(2008, 1, 1) self.SetEndDate(2021, 1, 13) self.InitCash = 1000000 self.SetCash(self.InitCash) self.MKT = self.AddEquity("SPY", Resolution.Hour).Symbol self.mkt = [] self.SetBrokerageModel(BrokerageName.InteractiveBrokersBrokerage, AccountType.Margin) res = Resolution.Hour self.BONDS = [self.AddEquity(ticker, res).Symbol for ticker in BONDS] self.INI_WAIT_DAYS = 15 self.wait_days = self.INI_WAIT_DAYS self.GLD = self.AddEquity('GLD', res).Symbol self.SLV = self.AddEquity('SLV', res).Symbol self.XLU = self.AddEquity('XLU', res).Symbol self.XLI = self.AddEquity('XLI', res).Symbol self.UUP = self.AddEquity('UUP', res).Symbol self.DBB = self.AddEquity('DBB', res).Symbol self.pairs = [self.GLD, self.SLV, self.XLU, self.XLI, self.UUP, self.DBB] self.bull = 1 self.bull_prior = 0 self.count = 0 self.outday = (-self.INI_WAIT_DAYS+1) self.SetWarmUp(timedelta(350)) self.UniverseSettings.Resolution = res self.AddUniverse(self.CoarseFilter, self.FineFilter) self.data = {} self.RebalanceFreq = 60 self.UpdateFineFilter = 0 self.symbols = None self.RebalanceCount = 0 self.wt = {} self.Schedule.On(self.DateRules.EveryDay(), self.TimeRules.AfterMarketOpen('SPY', 30), self.daily_check) symbols = [self.MKT] + self.pairs for symbol in symbols: self.consolidator = TradeBarConsolidator(timedelta(days=1)) self.consolidator.DataConsolidated += self.consolidation_handler self.SubscriptionManager.AddConsolidator(symbol, self.consolidator) self.history = self.History(symbols, VOLA, Resolution.Daily) if self.history.empty or 'close' not in self.history.columns: return self.history = self.history['close'].unstack(level=0).dropna() def consolidation_handler(self, sender, consolidated): self.history.loc[consolidated.EndTime, consolidated.Symbol] = consolidated.Close self.history = self.history.iloc[-VOLA:] def derive_vola_waitdays(self): sigma = 0.6 * np.log1p(self.history[[self.MKT]].pct_change()).std() * np.sqrt(252) wait_days = int(sigma * BASE_RET) period = int((1.0 - sigma) * BASE_RET) return wait_days, period def CoarseFilter(self, coarse): if not (((self.count-self.RebalanceCount) == self.RebalanceFreq) or (self.count == self.outday + self.wait_days - 1)): self.UpdateFineFilter = 0 return Universe.Unchanged self.UpdateFineFilter = 1 selected = [x for x in coarse if (x.HasFundamentalData) and (float(x.Price) > 5)] filtered = sorted(selected, key=lambda x: x.DollarVolume, reverse=True) return [x.Symbol for x in filtered[:N_COARSE]] def FineFilter(self, fundamental): if self.UpdateFineFilter == 0: return Universe.Unchanged filtered_fundamental = [x for x in fundamental if (x.ValuationRatios.EVToEBITDA > 0) and (x.EarningReports.BasicAverageShares.ThreeMonths > 0) and float(x.EarningReports.BasicAverageShares.ThreeMonths) * x.Price > 2e9 and x.SecurityReference.IsPrimaryShare and x.SecurityReference.SecurityType == "ST00000001" and x.SecurityReference.IsDepositaryReceipt == 0 and x.CompanyReference.IsLimitedPartnership == 0] top = sorted(filtered_fundamental, key = lambda x: x.ValuationRatios.EVToEBITDA, reverse=True)[:N_FACTOR] self.symbols = [x.Symbol for x in top] self.UpdateFineFilter = 0 self.RebalanceCount = self.count return self.symbols def OnSecuritiesChanged(self, changes): addedSymbols = [] for security in changes.AddedSecurities: addedSymbols.append(security.Symbol) if security.Symbol not in self.data: self.data[security.Symbol] = SymbolData(security.Symbol, STK_MOM, self) if len(addedSymbols) > 0: history = self.History(addedSymbols, 1 + STK_MOM, Resolution.Daily).loc[addedSymbols] for symbol in addedSymbols: try: self.data[symbol].Warmup(history.loc[symbol]) except: self.Debug(str(symbol)) continue def daily_check(self): self.wait_days, period = self.derive_vola_waitdays() r = self.history.pct_change(period).iloc[-1] bear = ((r[self.SLV] < r[self.GLD]) and (r[self.XLI] < r[self.XLU]) and (r[self.DBB] < r[self.UUP])) if bear: self.bull = False self.outday = self.count if (self.count >= self.outday + self.wait_days): self.bull = True self.wt_stk = LEV if self.bull else 0 self.wt_bnd = 0 if self.bull else LEV if bear: self.trade_out() if (self.bull and not self.bull_prior) or (self.bull and (self.count==self.RebalanceCount)): self.trade_in() self.bull_prior = self.bull self.count += 1 def trade_out(self): for sec in self.BONDS: self.wt[sec] = self.wt_bnd/len(self.BONDS) for sec in self.Portfolio.Keys: if sec not in self.BONDS: self.wt[sec] = 0 for sec, weight in self.wt.items(): if weight == 0 and self.Portfolio[sec].IsLong: self.Liquidate(sec) for sec, weight in self.wt.items(): if weight != 0: self.SetHoldings(sec, weight) def trade_in(self): if self.symbols is None: return output = self.calc_return(self.symbols) stocks = output.iloc[:N_MOM].index for sec in self.Portfolio.Keys: if sec not in stocks: self.wt[sec] = 0 for sec in stocks: self.wt[sec] = self.wt_stk/N_MOM for sec, weight in self.wt.items(): self.SetHoldings(sec, weight) def calc_return(self, stocks): ret = {} for symbol in stocks: try: ret[symbol] = self.data[symbol].Roc.Current.Value except: self.Debug(str(symbol)) continue df_ret = pd.DataFrame.from_dict(ret, orient='index') df_ret.columns = ['return'] sort_return = df_ret.sort_values(by = ['return'], ascending = False) return sort_return def OnEndOfDay(self): mkt_price = self.Securities[self.MKT].Close self.mkt.append(mkt_price) mkt_perf = self.InitCash * self.mkt[-1] / self.mkt[0] self.Plot('Strategy Equity', self.MKT, mkt_perf) account_leverage = self.Portfolio.TotalHoldingsValue / self.Portfolio.TotalPortfolioValue self.Plot('Holdings', 'leverage', round(account_leverage, 2)) self.Plot('Holdings', 'Target Leverage', LEV) class SymbolData(object): def __init__(self, symbol, roc, algorithm): self.Symbol = symbol self.Roc = RateOfChange(roc) self.algorithm = algorithm self.consolidator = algorithm.ResolveConsolidator(symbol, Resolution.Daily) algorithm.RegisterIndicator(symbol, self.Roc, self.consolidator) def Warmup(self, history): for index, row in history.iterrows(): self.Roc.Update(index, row['close'])