Overall Statistics |
Total Trades 227 Average Win 0.46% Average Loss -0.39% Compounding Annual Return -2.706% Drawdown 9.700% Expectancy -0.039 Net Profit -2.706% Sharpe Ratio -0.148 Loss Rate 56% Win Rate 44% Profit-Loss Ratio 1.20 Alpha -0.085 Beta 0.666 Annual Standard Deviation 0.11 Annual Variance 0.012 Information Ratio -1.306 Tracking Error 0.092 Treynor Ratio -0.024 Total Fees $240.62 |
/* * QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. * Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ using System.Collections.Generic; using System.Linq; using QuantConnect.Data.Market; using QuantConnect.Data.UniverseSelection; using QuantConnect.Indicators; namespace QuantConnect.Algorithm.CSharp { /// <summary> /// In this algorithm we demonstrate how to use the coarse fundamental data to /// define a universe as the top dollar volume /// </summary> public class UniverseSelectionADX : QCAlgorithm { private const int NumberOfSymbols = 10; // initialize our changes to nothing SecurityChanges _changes = SecurityChanges.None; public override void Initialize() { UniverseSettings.Resolution = Resolution.Daily; SetStartDate(2014, 01, 01); SetEndDate(2015, 01, 01); SetCash(50000); // this add universe method accepts a single parameter that is a function that // accepts an IEnumerable<CoarseFundamental> and returns IEnumerable<Symbol> AddUniverse(CoarseSelectionFunction); } // sort the data by daily dollar volume and take the top 'NumberOfSymbols' public static IEnumerable<Symbol> CoarseSelectionFunction(IEnumerable<CoarseFundamental> coarse) { // sort descending by daily dollar volume var sortedByDollarVolume = coarse.OrderByDescending(x => x.DollarVolume); // take the top entries from our sorted collection var top5 = sortedByDollarVolume.Take(NumberOfSymbols); // we need to return only the symbol objects return top5.Select(x => x.Symbol); } //Data Event Handler: New data arrives here. "TradeBars" type is a dictionary of strings so you can access it by symbol. public void OnData(TradeBars data) { // if we have no changes, do nothing if (_changes == SecurityChanges.None) return; // liquidate removed securities foreach (var security in _changes.RemovedSecurities) { if (security.Invested) { Liquidate(security.Symbol); } } // we want 20% allocation in each security in our universe foreach (var security in _changes.AddedSecurities) { var adx = new AverageDirectionalIndex("ADX14", 14); foreach (var bar in History(security.Symbol, 14)) { adx.Update(bar); } if (adx > 30) { SetHoldings(security.Symbol, 0.1m); } } _changes = SecurityChanges.None; } // this event fires whenever we have changes to our universe public override void OnSecuritiesChanged(SecurityChanges changes) { _changes = changes; } } }